Fusing morphometric characteristics with extreme precipitation indices for identifying the most vulnerable sub-basin at risk of flooding

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2023-09-01 DOI:10.1016/j.jher.2023.07.005
Dharmaveer Singh , Kunal Karan , Sudhir Kumar Singh , Pankaj Chauhan , Ronny Berndtsson
{"title":"Fusing morphometric characteristics with extreme precipitation indices for identifying the most vulnerable sub-basin at risk of flooding","authors":"Dharmaveer Singh ,&nbsp;Kunal Karan ,&nbsp;Sudhir Kumar Singh ,&nbsp;Pankaj Chauhan ,&nbsp;Ronny Berndtsson","doi":"10.1016/j.jher.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Fluvial floods are commonly studied as an occurrence at the level of a specific basin and are speculated to be closely related to the basin's morphometry. It is possible to identify and rank sub-basins based on how susceptible they are to fluvial flooding events using morphometric criteria. However, one of the key causes that triggers fluvial flooding is the increase in precipitation extremes and changes to their patterns. In this study, influence of morphometric factors and extreme precipitation events on the hydrological responses of the Brahmani River, India as well as their sensitivity to fluvial flooding, are investigated to identify the most vulnerable sub-basin in a catchment. The morphometric parameters were calculated from a digital elevation model (DEM), and the change in trend of extreme precipitation indices was detected using precipitation data of period 1991 to 2021. Furthermore, the Standardized Precipitation Index (SPI) was used to determine the frequency of wet cycles on time scale of 1, 3, 12, and 24 months, as well as their link to fluvial flooding. The two sub-basins of the catchment that are most vulnerable to river flooding are recognised as Noamundi and Gomlai based on morphometric criteria. However, analysis of SPI and extreme precipitation indices showed that the Jenapur sub-basin is the most vulnerable to flooding. It is also corroborated with analytic hierarchy process (AHP) based weighted overlay analysis and historical flood records. The outcomes will assist researchers in better understanding the mechanisms causing flooding in the Brahamni River Basin and in developing flood mitigation practices for the most vulnerable Jenapur sub-basin.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"50 ","pages":"Pages 44-56"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000291","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluvial floods are commonly studied as an occurrence at the level of a specific basin and are speculated to be closely related to the basin's morphometry. It is possible to identify and rank sub-basins based on how susceptible they are to fluvial flooding events using morphometric criteria. However, one of the key causes that triggers fluvial flooding is the increase in precipitation extremes and changes to their patterns. In this study, influence of morphometric factors and extreme precipitation events on the hydrological responses of the Brahmani River, India as well as their sensitivity to fluvial flooding, are investigated to identify the most vulnerable sub-basin in a catchment. The morphometric parameters were calculated from a digital elevation model (DEM), and the change in trend of extreme precipitation indices was detected using precipitation data of period 1991 to 2021. Furthermore, the Standardized Precipitation Index (SPI) was used to determine the frequency of wet cycles on time scale of 1, 3, 12, and 24 months, as well as their link to fluvial flooding. The two sub-basins of the catchment that are most vulnerable to river flooding are recognised as Noamundi and Gomlai based on morphometric criteria. However, analysis of SPI and extreme precipitation indices showed that the Jenapur sub-basin is the most vulnerable to flooding. It is also corroborated with analytic hierarchy process (AHP) based weighted overlay analysis and historical flood records. The outcomes will assist researchers in better understanding the mechanisms causing flooding in the Brahamni River Basin and in developing flood mitigation practices for the most vulnerable Jenapur sub-basin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合形态特征与极端降水指数识别洪涝最脆弱子流域
河流洪水通常被研究为特定流域水平的一种发生,并被推测与流域的形态计量学密切相关。使用形态计量标准,可以根据子盆地对河流泛滥事件的敏感性来识别和排序。然而,引发河流泛滥的关键原因之一是极端降水量的增加及其模式的变化。在本研究中,调查了形态计量因素和极端降水事件对印度布拉马尼河水文响应的影响,以及它们对河流洪水的敏感性,以确定集水区中最脆弱的子流域。根据数字高程模型(DEM)计算形态计量参数,并使用1991年至2021年期间的降水数据检测极端降水指数的趋势变化。此外,标准化降水指数(SPI)用于确定1、3、12和24个月时间尺度上的湿周期频率,以及它们与河流泛滥的联系。根据形态计量标准,该流域最容易受到河流洪水影响的两个子流域被认定为Noamundi和Gomlai。然而,SPI和极端降水指数的分析表明,杰纳普尔次盆地最容易受到洪水的影响。基于层次分析法(AHP)的加权叠加分析和历史洪水记录也证实了这一点。研究结果将有助于研究人员更好地了解Brahamni河流域引发洪水的机制,并为最脆弱的Jenapur次流域制定洪水缓解措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation Assessment of the impact of greenhouse rainwater harvesting managed aquifer recharge on the groundwater system in the southern Jeju Island, South Korea: Implication from a numerical modeling approach Real-time prediction of the week-ahead flood index using hybrid deep learning algorithms with synoptic climate mode indices Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1