Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2023-09-07 DOI:10.1140/epjqt/s40507-023-00189-8
Jun Teng, Shuang Wang, Zhen-Qiang Yin, Wei Chen, Guan-Jie Fan-Yuan, Guang-Can Guo, Zheng-Fu Han
{"title":"Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system","authors":"Jun Teng,&nbsp;Shuang Wang,&nbsp;Zhen-Qiang Yin,&nbsp;Wei Chen,&nbsp;Guan-Jie Fan-Yuan,&nbsp;Guang-Can Guo,&nbsp;Zheng-Fu Han","doi":"10.1140/epjqt/s40507-023-00189-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO<sub>3</sub> based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00189-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00189-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO3 based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QKD系统中基于LiNbO3的马赫-曾德尔强度调制器的任意偏置控制
量子密钥分发(QKD)可以帮助远程代理共享无条件密钥,并且借助诱饵状态协议可以提高可实现的密钥速率。为了在实验上实现QKD, agent应该使用基于LiNbO3的Mach-Zehnder (LNMZ)强度调制器准确地传输许多不同强度的脉冲。然而,LNMZ强度调制器的偏置漂移会影响QKD系统的性能。在这封信中,我们揭示了一个简单的RC电路模型来演示LNMZ强度调制器中的偏置漂移。在此基础上,提出了多步偏置稳定方案来控制偏置工作点。实验结果表明,该方案可以在较长的时间范围内消除任意工作点的偏置漂移。此外,该方案不需要任何反馈机制。这意味着我们的方案不会导致系统复杂性的任何增加,使其更适合于QKD系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search Generation of phonon quantum states and quantum correlations among single photon emitters in hexagonal boron nitride Teaching quantum information science to secondary school students with photon polarization and which-path encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1