Yunqi Huang, Yutong Lu, Cailing Song, Yican Wei, Yuxi Yang, Jie Ren, Meiling Wang, Congli Tang, Aayesha Riaz, M. Shah, Yan Deng, Hongna Liu, Wenjing Pan, Song Li
{"title":"Advances in Nanopore and Photoelectron-Based High-Throughput Sequencing Technology for Single-Molecule Sequencing","authors":"Yunqi Huang, Yutong Lu, Cailing Song, Yican Wei, Yuxi Yang, Jie Ren, Meiling Wang, Congli Tang, Aayesha Riaz, M. Shah, Yan Deng, Hongna Liu, Wenjing Pan, Song Li","doi":"10.1166/jno.2023.3419","DOIUrl":null,"url":null,"abstract":"Next-Generation sequencing is a widespread technology of sequencing which is used in genomics research and biotechnology, although it comes with many shortcomings such as short read length or polymerase chain reactions (PCR) bias. In this review, a brief introduction is provided to\n the Helicos Biosciences true single-molecule sequencing (tSMS), Pacific Biosciences single-molecule real-time (SMRT) sequencing and Oxford Nanopore single-molecule sequencing technologies. In comparison with both first- and second-generation sequencing technologies, third-generation sequencing\n such as nanopore and photoelectron high-throughput sequencing technologies have the advantages of ultra-long read length and no PCR bias, which help to study repetitive regions of the genome and complex structural variants, thus correctly identifying potential gene mutations in various diseases,\n and are important for diagnosis and treatment of various diseases. This paper focuses on the sequencing principles of nanopore and photoelectron high-throughput sequencing technologies as well as their applications in cancer, pathogen detection and genetic diseases.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2023.3419","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Next-Generation sequencing is a widespread technology of sequencing which is used in genomics research and biotechnology, although it comes with many shortcomings such as short read length or polymerase chain reactions (PCR) bias. In this review, a brief introduction is provided to
the Helicos Biosciences true single-molecule sequencing (tSMS), Pacific Biosciences single-molecule real-time (SMRT) sequencing and Oxford Nanopore single-molecule sequencing technologies. In comparison with both first- and second-generation sequencing technologies, third-generation sequencing
such as nanopore and photoelectron high-throughput sequencing technologies have the advantages of ultra-long read length and no PCR bias, which help to study repetitive regions of the genome and complex structural variants, thus correctly identifying potential gene mutations in various diseases,
and are important for diagnosis and treatment of various diseases. This paper focuses on the sequencing principles of nanopore and photoelectron high-throughput sequencing technologies as well as their applications in cancer, pathogen detection and genetic diseases.