O. Pavlou, I. Michos, V. Papadopoulou Lesta, M. Papadopoulos, E.S. Papaefthymiou, A. Efstathiou
{"title":"Graph Theoretical Analysis of local ultraluminous infrared galaxies and quasars","authors":"O. Pavlou, I. Michos, V. Papadopoulou Lesta, M. Papadopoulos, E.S. Papaefthymiou, A. Efstathiou","doi":"10.1016/j.ascom.2023.100742","DOIUrl":null,"url":null,"abstract":"<div><p>We present a methodological framework for studying galaxy evolution by utilizing Graph Theory and network analysis tools. We study the evolutionary processes of local ultraluminous infrared galaxies (ULIRGs) and quasars and the underlying physical processes, such as star formation and active galactic nucleus (AGN) activity, through the application of Graph Theoretical analysis tools. We extract, process and analyze mid-infrared spectra of local (z ¡ 0.4) ULIRGs and quasars between 5-38<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> through internally developed Python routines, in order to generate similarity graphs, with the nodes representing ULIRGs being grouped together based on the similarity of their spectra. Additionally, we extract and compare physical features from the mid-IR spectra, such as the polycyclic aromatic hydrocarbons (PAHs) emission and silicate depth absorption features, as indicators of the presence of star-forming regions and obscuring dust, in order to understand the underlying physical mechanisms of each evolutionary stage of ULIRGs. Our analysis identifies five groups of local ULIRGs based on their mid-IR spectra, which is quite consistent with the well established <em>fork</em> classification diagram by providing a higher level classification. We demonstrate how graph clustering algorithms and network analysis tools can be utilized as unsupervised learning techniques for revealing direct or indirect relations between various galaxy properties and evolutionary stages, which provides an alternative methodology to previous works for classification in galaxy evolution. Additionally, our methodology compares the output of several graph clustering algorithms in order to demonstrate the best-performing Graph Theoretical tools for studying galaxy evolution.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000574","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We present a methodological framework for studying galaxy evolution by utilizing Graph Theory and network analysis tools. We study the evolutionary processes of local ultraluminous infrared galaxies (ULIRGs) and quasars and the underlying physical processes, such as star formation and active galactic nucleus (AGN) activity, through the application of Graph Theoretical analysis tools. We extract, process and analyze mid-infrared spectra of local (z ¡ 0.4) ULIRGs and quasars between 5-38 through internally developed Python routines, in order to generate similarity graphs, with the nodes representing ULIRGs being grouped together based on the similarity of their spectra. Additionally, we extract and compare physical features from the mid-IR spectra, such as the polycyclic aromatic hydrocarbons (PAHs) emission and silicate depth absorption features, as indicators of the presence of star-forming regions and obscuring dust, in order to understand the underlying physical mechanisms of each evolutionary stage of ULIRGs. Our analysis identifies five groups of local ULIRGs based on their mid-IR spectra, which is quite consistent with the well established fork classification diagram by providing a higher level classification. We demonstrate how graph clustering algorithms and network analysis tools can be utilized as unsupervised learning techniques for revealing direct or indirect relations between various galaxy properties and evolutionary stages, which provides an alternative methodology to previous works for classification in galaxy evolution. Additionally, our methodology compares the output of several graph clustering algorithms in order to demonstrate the best-performing Graph Theoretical tools for studying galaxy evolution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.