Dynamic Nonparametric Clustering of Multivariate Panel Data

IF 2.2 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2022-12-15 DOI:10.1093/jjfinec/nbac038
Igor Custodio João, Julia Schaumburg, A. Lucas, B. Schwaab
{"title":"Dynamic Nonparametric Clustering of Multivariate Panel Data","authors":"Igor Custodio João, Julia Schaumburg, A. Lucas, B. Schwaab","doi":"10.1093/jjfinec/nbac038","DOIUrl":null,"url":null,"abstract":"\n We introduce a new dynamic clustering method for multivariate panel data characterized by time-variation in cluster locations and shapes, cluster compositions, and possibly the number of clusters. To avoid overly frequent cluster switching (flickering), we extend standard cross-sectional clustering techniques with a penalty that shrinks observations toward the current center of their previous cluster assignment. This links consecutive cross-sections in the panel together, substantially reduces flickering, and enhances the economic interpretability of the outcome. We choose the shrinkage parameter in a data-driven way and study its misclassification properties theoretically as well as in several challenging simulation settings. The method is illustrated using a multivariate panel of four accounting ratios for 28 large European insurance firms between 2010 and 2020.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbac038","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new dynamic clustering method for multivariate panel data characterized by time-variation in cluster locations and shapes, cluster compositions, and possibly the number of clusters. To avoid overly frequent cluster switching (flickering), we extend standard cross-sectional clustering techniques with a penalty that shrinks observations toward the current center of their previous cluster assignment. This links consecutive cross-sections in the panel together, substantially reduces flickering, and enhances the economic interpretability of the outcome. We choose the shrinkage parameter in a data-driven way and study its misclassification properties theoretically as well as in several challenging simulation settings. The method is illustrated using a multivariate panel of four accounting ratios for 28 large European insurance firms between 2010 and 2020.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元面板数据的动态非参数聚类
本文介绍了一种新的动态聚类方法,用于多变量面板数据,这些数据具有聚类位置和形状、聚类组成以及可能的聚类数量的时变特征。为了避免过于频繁的集群切换(闪烁),我们扩展了标准的横截面聚类技术,并对其进行了惩罚,使观察值缩小到其先前集群分配的当前中心。这将面板中连续的横截面连接在一起,大大减少了闪烁,并增强了结果的经济可解释性。我们以数据驱动的方式选择收缩参数,并在理论上以及在几个具有挑战性的模拟设置中研究其误分类特性。该方法是用多元面板的四个会计比率为28家大型欧洲保险公司在2010年和2020年之间说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1