{"title":"Edge-assisted Object Segmentation using Multimodal Feature Aggregation and Learning","authors":"Jianbo Li, Genji Yuan, Zheng Yang","doi":"10.1145/3612922","DOIUrl":null,"url":null,"abstract":"Object segmentation aims to perfectly identify objects embedded in the surrounding environment and has a wide range of applications. Most previous methods of object segmentation only use RGB images and ignore geometric information from disparity images. Making full use of heterogeneous data from different devices has proved to be a very effective strategy for improving segmentation performance. The key challenge of the multimodal fusion based object segmentation task lies in the learning, transformation, and fusion of multimodal information. In this paper, we focus on the transformation of disparity images and the fusion of multimodal features. We develop a multimodal fusion object segmentation framework, termed the Hybrid Fusion Segmentation Network (HFSNet). Specifically, HFSNet contains three key components, i.e., disparity convolutional sparse coding (DCSC), asymmetric dense projection feature aggregation (ADPFA) and multimodal feature fusion (MFF). The DCSC is designed based on convolutional sparse coding. It not only has better interpretability but also preserves the key geometric information of the object. ADPFA is designed to enhance texture and geometric information to fully exploit nonadjacent features. MFF is used to perform multimodal feature fusion. Extensive experiments show that our HFSNet outperforms existing state-of-the-art models on two challenging datasets.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3612922","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Object segmentation aims to perfectly identify objects embedded in the surrounding environment and has a wide range of applications. Most previous methods of object segmentation only use RGB images and ignore geometric information from disparity images. Making full use of heterogeneous data from different devices has proved to be a very effective strategy for improving segmentation performance. The key challenge of the multimodal fusion based object segmentation task lies in the learning, transformation, and fusion of multimodal information. In this paper, we focus on the transformation of disparity images and the fusion of multimodal features. We develop a multimodal fusion object segmentation framework, termed the Hybrid Fusion Segmentation Network (HFSNet). Specifically, HFSNet contains three key components, i.e., disparity convolutional sparse coding (DCSC), asymmetric dense projection feature aggregation (ADPFA) and multimodal feature fusion (MFF). The DCSC is designed based on convolutional sparse coding. It not only has better interpretability but also preserves the key geometric information of the object. ADPFA is designed to enhance texture and geometric information to fully exploit nonadjacent features. MFF is used to perform multimodal feature fusion. Extensive experiments show that our HFSNet outperforms existing state-of-the-art models on two challenging datasets.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.