{"title":"Study on the intermediate crack-induced debonding strain of FRP-strengthened concrete members using the updated BP neural network","authors":"Yu Xuan rui","doi":"10.1016/j.asej.2022.102085","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber reinforced plastics (FRP) are often used to enhance the capacity of the reinforced concrete beam (RC beam). However, the debonding failure is often observed due to the effect of the complex environment and the random loads. The debonding failure includes three types: plate end interfacial debonding (PE debonding), critical diagonal crack-induced debonding (CDC debonding), and intermediate flexural crack-induced interfacial debonding (IC debonding). In order to investigate the IC debonding strain of RC beam strength by FRP, this paper proposed some data-driven models to explore the IC debonding strain, based on the machine learning approaches The concrete strength, shear span proportion, the proportion of anchorage length to shear width, tensile reinforcement proportion, steel yield strength, stirrup reinforcement ratio, FRP stiffness, and the proportion of sheet span to beamwidth were regarded as the input parameters. The IC debonding strain was regarded as the output. It was found that the BP model can predict the IC debonding strain well. However, the BP data-driven model is easy to fall into a local minimum, and it is very difficult to converge, which has a negative effect on the accuracy of the model. The Sparrow Search Algorithm (SSA) was proposed to update it. The results indicated that the neural network optimized by SSA with lowest relative error, which can predict the IC debonding strain well. In addition, a study on the importance of each input found that the concrete strength, shear span proportion, and reinforcement yield strength will have a big impact on the IC debonding strain.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 11","pages":"Article 102085"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447922003963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber reinforced plastics (FRP) are often used to enhance the capacity of the reinforced concrete beam (RC beam). However, the debonding failure is often observed due to the effect of the complex environment and the random loads. The debonding failure includes three types: plate end interfacial debonding (PE debonding), critical diagonal crack-induced debonding (CDC debonding), and intermediate flexural crack-induced interfacial debonding (IC debonding). In order to investigate the IC debonding strain of RC beam strength by FRP, this paper proposed some data-driven models to explore the IC debonding strain, based on the machine learning approaches The concrete strength, shear span proportion, the proportion of anchorage length to shear width, tensile reinforcement proportion, steel yield strength, stirrup reinforcement ratio, FRP stiffness, and the proportion of sheet span to beamwidth were regarded as the input parameters. The IC debonding strain was regarded as the output. It was found that the BP model can predict the IC debonding strain well. However, the BP data-driven model is easy to fall into a local minimum, and it is very difficult to converge, which has a negative effect on the accuracy of the model. The Sparrow Search Algorithm (SSA) was proposed to update it. The results indicated that the neural network optimized by SSA with lowest relative error, which can predict the IC debonding strain well. In addition, a study on the importance of each input found that the concrete strength, shear span proportion, and reinforcement yield strength will have a big impact on the IC debonding strain.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.