Time Series Data Mining for Sport Data: a Review

Rumena Komitova, Dominik Raabe, R. Rein, D. Memmert
{"title":"Time Series Data Mining for Sport Data: a Review","authors":"Rumena Komitova, Dominik Raabe, R. Rein, D. Memmert","doi":"10.2478/ijcss-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract Time series data mining deals with extracting useful and meaningful information from time series data. Recently, the increasing use of temporal data, in particular time series data, has received much attention in the literature. Since most of sports data contain time information, it is natural to consider the temporal dimension in form of time series. However, in sports, the effective use of time series data mining techniques is still under development. The main goal of this paper is therefore to serve as an introduction to time series data mining and a glossary for interested researchers from the sports community. The paper gives an overview about current data mining tasks and tries to identify their potential research direction for further investigation. Furthermore, we want to draw more attention with respect to the importance of mining approaches with sport data and their particular challenges beyond usual time series data mining tasks.","PeriodicalId":38466,"journal":{"name":"International Journal of Computer Science in Sport","volume":"21 1","pages":"17 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijcss-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Time series data mining deals with extracting useful and meaningful information from time series data. Recently, the increasing use of temporal data, in particular time series data, has received much attention in the literature. Since most of sports data contain time information, it is natural to consider the temporal dimension in form of time series. However, in sports, the effective use of time series data mining techniques is still under development. The main goal of this paper is therefore to serve as an introduction to time series data mining and a glossary for interested researchers from the sports community. The paper gives an overview about current data mining tasks and tries to identify their potential research direction for further investigation. Furthermore, we want to draw more attention with respect to the importance of mining approaches with sport data and their particular challenges beyond usual time series data mining tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体育数据的时间序列数据挖掘研究综述
时间序列数据挖掘是从时间序列数据中提取有用的、有意义的信息。近年来,越来越多地使用时间数据,特别是时间序列数据,在文献中受到了广泛的关注。由于大多数体育数据都包含时间信息,所以自然会以时间序列的形式来考虑时间维度。然而,在体育领域,时间序列数据挖掘技术的有效利用仍在开发中。因此,本文的主要目标是为体育界感兴趣的研究人员提供时间序列数据挖掘的介绍和术语表。本文概述了当前的数据挖掘任务,并试图确定其潜在的研究方向,以进一步研究。此外,我们希望更多地关注体育数据挖掘方法的重要性,以及它们在常规时间序列数据挖掘任务之外的特殊挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Science in Sport
International Journal of Computer Science in Sport Computer Science-Computer Science (all)
CiteScore
2.20
自引率
0.00%
发文量
4
审稿时长
12 weeks
期刊最新文献
Automatic Detection of Faults in Simulated Race Walking from a Fixed Smartphone Camera Spin measurement system for table tennis balls based on asynchronous non-high-speed cameras The Use of Momentum-Inspired Features in Pre-Game Prediction Models for the Sport of Ice Hockey Hierarchical Bayesian analysis of racehorse running ability and jockey skills Workload Monitoring Tools in Field-Based Team Sports, the Emerging Technology and Analytics used for Performance and Injury Prediction: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1