Acridine Yellow G-catalyzed Visible-Light-Promoted Synthesis of 2-amino-4 H-chromene Scaffolds via a Photo-Induced Electron Transfer Process in an Aqueous Media
{"title":"Acridine Yellow G-catalyzed Visible-Light-Promoted Synthesis of 2-amino-4 H-chromene Scaffolds via a Photo-Induced Electron Transfer Process in an Aqueous Media","authors":"Farzaneh Mohamadpour","doi":"10.1007/s10563-023-09397-9","DOIUrl":null,"url":null,"abstract":"<div><p>By employing the Knoevenagel–Michael tandem cyclocondensation of malononitrile, aldehydes, and resorcinol, we developed a green method for the radical synthesis of 2-amino-4<i> H</i>-chromene scaffolds. A photo-induced electron transfer (PET) photocatalyst was employed in an aqueous solution to use visible light as a renewable energy source. This study aims to develop a non-metal dye that is inexpensive and easily accessible. In addition to having speed-saving features and being simple to use, the photochemically catalyzed AYG demonstrates high yields, energy efficiency, and environmental friendliness. This makes it possible to track changes in chemical and environmental variables throughout time. It is amazing that gram-scale cyclization is practical, proving that it has industrial applications.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 3","pages":"306 - 317"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-023-09397-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
By employing the Knoevenagel–Michael tandem cyclocondensation of malononitrile, aldehydes, and resorcinol, we developed a green method for the radical synthesis of 2-amino-4 H-chromene scaffolds. A photo-induced electron transfer (PET) photocatalyst was employed in an aqueous solution to use visible light as a renewable energy source. This study aims to develop a non-metal dye that is inexpensive and easily accessible. In addition to having speed-saving features and being simple to use, the photochemically catalyzed AYG demonstrates high yields, energy efficiency, and environmental friendliness. This makes it possible to track changes in chemical and environmental variables throughout time. It is amazing that gram-scale cyclization is practical, proving that it has industrial applications.
通过丙二腈、醛和间苯二酚的Knoevenagel-Michael串联环缩合反应,我们开发了一种绿色的自由基合成2-氨基-4 h -铬支架的方法。利用可见光作为可再生能源,在水溶液中制备了光致电子转移(PET)光催化剂。本研究旨在开发一种价格低廉且易于获取的非金属染料。除了具有节省速度和使用简单的特点外,光化学催化的AYG具有高产率,能源效率和环境友好性。这使得跟踪化学和环境变量随时间的变化成为可能。令人惊讶的是,克级循环是实用的,证明它具有工业应用价值。
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.