Perbandingan Metode Segmentasi K-Means Clustering dan Segmentasi Region Growing untuk Pengukuran Luas Wilayah Hutan Mangrove

Tyas Panorama Nan Cerah, Oky Dwi Nurhayati, R. Isnanto
{"title":"Perbandingan Metode Segmentasi K-Means Clustering dan Segmentasi Region Growing untuk Pengukuran Luas Wilayah Hutan Mangrove","authors":"Tyas Panorama Nan Cerah, Oky Dwi Nurhayati, R. Isnanto","doi":"10.14710/JTSISKOM.7.1.2019.31-37","DOIUrl":null,"url":null,"abstract":"This study aims to examine the k-means clustering and region growing segmentation methods to identify and measure the area of mangrove forests in the Southeast Sulawesi province. The image of the area of this study used Landsat 8 satellite imagery. The area of mangrove forest was carried out by calculating the number of pixels identified as mangrove forests with an area density of 900 m2/pixel. The accuracy of the two segmentation methods in calculating the area was compared based on the same area calculated by LAPAN. The overall accuracy of k-means clustering segmentation method has better accuracy, which is 59.26%, than region growing with 33.33% of accuracy. Both image segmentation methods, k-means clustering and region growing, can be used to calculate the area of mangrove forests in the Southeast Sulawesi region using Landsat 8 satellite imagery.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.7.1.2019.31-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study aims to examine the k-means clustering and region growing segmentation methods to identify and measure the area of mangrove forests in the Southeast Sulawesi province. The image of the area of this study used Landsat 8 satellite imagery. The area of mangrove forest was carried out by calculating the number of pixels identified as mangrove forests with an area density of 900 m2/pixel. The accuracy of the two segmentation methods in calculating the area was compared based on the same area calculated by LAPAN. The overall accuracy of k-means clustering segmentation method has better accuracy, which is 59.26%, than region growing with 33.33% of accuracy. Both image segmentation methods, k-means clustering and region growing, can be used to calculate the area of mangrove forests in the Southeast Sulawesi region using Landsat 8 satellite imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K均值聚类分割方法与生长区分割方法在红树林外部测量中的比较
本研究旨在检验k-means聚类和区域生长分割方法,以识别和测量东南苏拉威西省的红树林面积。本研究区域的图像使用了陆地卫星8号卫星图像。红树林面积是通过计算被确定为面积密度为900平方米/像素的红树林的像素数量来进行的。在LAPAN计算相同面积的基础上,比较了两种分割方法计算面积的准确性。k-means聚类分割方法的整体准确率为59.26%,高于33.33%的区域增长准确率。使用Landsat 8卫星图像,可以使用k-means聚类和区域生长这两种图像分割方法来计算东南苏拉威西地区的红树林面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1