{"title":"From Text Signals to Simulations: A Review and Complement to Text as Data by Grimmer, Roberts & Stewart (PUP 2022)","authors":"James A. Evans","doi":"10.1177/00491241221123086","DOIUrl":null,"url":null,"abstract":"Text as Data represents a major advance for teaching text analysis in the social sciences, digital humanities and data science by providing an integrated framework for how to conceptualize and deploy natural language processing techniques to enrich descriptive and causal analyses of social life in and from text. Here I review achievements of the book and highlight complementary paths not taken, including discussion of recent computational techniques like transformers, which have come to dominate automated language understanding and are just beginning to find their way into the careful research designs showcased in the book. These new methods not only highlight text as a signal from society, but textual models as simulations of society, which could fuel future advances in causal inference and experimentation. Text as Data's focus on textual discovery, measurement and inference points us toward this new frontier, cautioning us not to ignore, but build upon social scientific interpretation and theory.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"51 1","pages":"1868 - 1885"},"PeriodicalIF":6.5000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241221123086","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Text as Data represents a major advance for teaching text analysis in the social sciences, digital humanities and data science by providing an integrated framework for how to conceptualize and deploy natural language processing techniques to enrich descriptive and causal analyses of social life in and from text. Here I review achievements of the book and highlight complementary paths not taken, including discussion of recent computational techniques like transformers, which have come to dominate automated language understanding and are just beginning to find their way into the careful research designs showcased in the book. These new methods not only highlight text as a signal from society, but textual models as simulations of society, which could fuel future advances in causal inference and experimentation. Text as Data's focus on textual discovery, measurement and inference points us toward this new frontier, cautioning us not to ignore, but build upon social scientific interpretation and theory.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.