M. Guida, S. Lanaya, F. Laghchioua, Z. Rbihi, A. Hannioui
{"title":"Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW)","authors":"M. Guida, S. Lanaya, F. Laghchioua, Z. Rbihi, A. Hannioui","doi":"10.1556/446.2020.00012","DOIUrl":null,"url":null,"abstract":"This study deals with fast pyrolysis of sawdust wood waste (SWW) at the range of temperature 300–700 °C in a stainless steel tubular reactor. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–20 °C/min, below 0.1–1.5 mm and 20–200 mL min−1, respectively. It was concluded that both the temperature and heating rate have a significant effect on both yield of bio-oil and bio-char resulting from pyrolysis of SWW. The liquid products obtained at various pyrolysis temperatures were subjected into column chromatography after removal of asphaltenes (hexane insoluble). Obtained bio-oils (maltenes or hexane soluble) were classified as aliphatic, aromatic and polar sub-fractions. The maximum of bio-oil yield of 39.5 wt% was obtained at a pyrolysis temperature of 500 °C, particle size between 0.5 and 1 mm, nitrogen flow rate (N2) of 100 mL min−1 and heating rate of 5 °C/min. Liquid product (bio-oil) obtained under the most suitable and optimal condition was characterized by elemental analysis, Nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), Fourier transformed infrared spectroscopy (FT-IR). The analysis of liquid showed that bio-oil from SWW could be a potential source of renewable fuel production and value added chemical. The yield of char generally decreases with increasing the temperature, the char yield passes from 54.61 to 29.47 wt% at the heating rate of 5 °C/min and from 50.01 to 24.5 wt% at the heating rate of 20 °C/min at the same range of temperature (300–700 °C). Solid products (bio-char) obtained in the presence of nitrogen (N2) contain a very important percentage of carbon and high heating values (HHVs).","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
This study deals with fast pyrolysis of sawdust wood waste (SWW) at the range of temperature 300–700 °C in a stainless steel tubular reactor. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–20 °C/min, below 0.1–1.5 mm and 20–200 mL min−1, respectively. It was concluded that both the temperature and heating rate have a significant effect on both yield of bio-oil and bio-char resulting from pyrolysis of SWW. The liquid products obtained at various pyrolysis temperatures were subjected into column chromatography after removal of asphaltenes (hexane insoluble). Obtained bio-oils (maltenes or hexane soluble) were classified as aliphatic, aromatic and polar sub-fractions. The maximum of bio-oil yield of 39.5 wt% was obtained at a pyrolysis temperature of 500 °C, particle size between 0.5 and 1 mm, nitrogen flow rate (N2) of 100 mL min−1 and heating rate of 5 °C/min. Liquid product (bio-oil) obtained under the most suitable and optimal condition was characterized by elemental analysis, Nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), Fourier transformed infrared spectroscopy (FT-IR). The analysis of liquid showed that bio-oil from SWW could be a potential source of renewable fuel production and value added chemical. The yield of char generally decreases with increasing the temperature, the char yield passes from 54.61 to 29.47 wt% at the heating rate of 5 °C/min and from 50.01 to 24.5 wt% at the heating rate of 20 °C/min at the same range of temperature (300–700 °C). Solid products (bio-char) obtained in the presence of nitrogen (N2) contain a very important percentage of carbon and high heating values (HHVs).
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.