Improved calibration method for displacement transformation coefficient in optical and visual measurements

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI:10.1063/10.0016714
Haopeng Li, Z. Qiu
{"title":"Improved calibration method for displacement transformation coefficient in optical and visual measurements","authors":"Haopeng Li, Z. Qiu","doi":"10.1063/10.0016714","DOIUrl":null,"url":null,"abstract":"Optical and visual measurement technology is used widely in fields that involve geometric measurements, and among such technology are laser and vision-based displacement measuring modules (LVDMMs). The displacement transformation coefficient (DTC) of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process, and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view (FFOV). To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands, a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV. First, an image coordinate system, a pixel measurement coordinate system, and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM. In addition, marker spots in the FFOV are selected, and the DTCs at the marker spots are obtained from calibration experiments. Also, a fitting method based on locally weighted scatterplot smoothing (LOWESS) is selected, and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots. Finally, the calibrated distribution functions of the DTCs are applied to the LVDMM, and experiments conducted to verify the displacement measurement accuracies are reported. The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than ±15 µm and ±19 µm, respectively, and that for oblique displacement is better than ±24 µm. Compared with the traditional calibration method, the displacement measurement error in the FFOV is now 90% smaller. This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV, and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0016714","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical and visual measurement technology is used widely in fields that involve geometric measurements, and among such technology are laser and vision-based displacement measuring modules (LVDMMs). The displacement transformation coefficient (DTC) of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process, and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view (FFOV). To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands, a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV. First, an image coordinate system, a pixel measurement coordinate system, and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM. In addition, marker spots in the FFOV are selected, and the DTCs at the marker spots are obtained from calibration experiments. Also, a fitting method based on locally weighted scatterplot smoothing (LOWESS) is selected, and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots. Finally, the calibrated distribution functions of the DTCs are applied to the LVDMM, and experiments conducted to verify the displacement measurement accuracies are reported. The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than ±15 µm and ±19 µm, respectively, and that for oblique displacement is better than ±24 µm. Compared with the traditional calibration method, the displacement measurement error in the FFOV is now 90% smaller. This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV, and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进了光学和视觉测量中位移变换系数的标定方法
光学和视觉测量技术广泛应用于涉及几何测量的领域,其中包括基于激光和视觉的位移测量模块(LVDMM)。LVDMM的位移变换系数(DTC)在位移测量过程中随着相机图像坐标系中的坐标而变化,这些变化影响LVDMM在全视场(FFOV)中的位移测量精度。为了使LVDMM在FFOV中具有更高的精度,并使其适应广泛变化的测量需求,提出了一种新的校准方法来提高LVDMM在FF中的位移测量精度。首先,在LVDMM的激光接收屏幕上建立图像坐标系、像素测量坐标系和位移测量坐标系。此外,选择FFOV中的标记点,并从校准实验中获得标记点处的DTC。此外,选择了基于局部加权散点图平滑(LOWESS)的拟合方法,并且利用该拟合方法,基于标记点处的DTC来获得FFOV中的DTC的分布函数。最后,将校准后的DTC分布函数应用于LVDMM,并通过实验验证了位移测量的准确性。结果表明,水平位移和垂直位移的FFOV测量精度分别优于±15µm和±19µm,倾斜位移的测量精度优于±24µm。与传统的校准方法相比,FFOV中的位移测量误差现在小了90%。研究一种改进的校准方法,对提高FFOV中LVDMM的测量精度具有一定意义,为其他必须校准相机参数的基于视觉的领域提供了一种新的方法和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes Effects of simulated zero gravity on adhesion, cell structure, proliferation, and growth behavior, in glioblastoma multiforme Electrode design for multimode suppression of aluminum nitride tuning fork resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1