{"title":"Two-way nesting in a split-implicit ocean model: NCOM","authors":"Jie Yu, C. Blain, P. Martin, T. Campbell","doi":"10.1175/jtech-d-22-0112.1","DOIUrl":null,"url":null,"abstract":"\nPresented is the approach, implementation, and evaluation of two-way nesting in a split-implicit ocean model, the Navy Coastal Ocean Model (NCOM). Emphasis is on the strategies applied to feed back fields from the fine-mesh nest (child grid) to the coarse-mesh (parent grid). On an appropriate separation of dynamic and feedback interfaces, attention is especially needed for the feedback interface of surface elevation. One particular issue addressed is the inconsistency between the 3D baroclinic velocities and 2D barotropic transports in the feedback. The discrepancy is inherently associated with bathymetry, depth-integration, and the need to average over spatial grid points. A simple remedy is proposed and proven to be effective and necessary in realistic coastal applications. In addition to the full two-way nesting, a simplified two-way nesting approach is provided in which only the temperature and salinity are fed back from the nest, and the velocity fields are assumed to self-adjust according to the geostrophic balance. The performance of both approaches is evaluated using the idealized benchmark, propagation of a baroclinic vortex, and an application to the Mississippi River outflowin the northeast Gulf ofMexico, including a comparison with available observations. Discussions are also made on the computational efficiency of the two-way nesting and its sensitivity to the open boundary conditions in regard to noise suppression.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0112.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Presented is the approach, implementation, and evaluation of two-way nesting in a split-implicit ocean model, the Navy Coastal Ocean Model (NCOM). Emphasis is on the strategies applied to feed back fields from the fine-mesh nest (child grid) to the coarse-mesh (parent grid). On an appropriate separation of dynamic and feedback interfaces, attention is especially needed for the feedback interface of surface elevation. One particular issue addressed is the inconsistency between the 3D baroclinic velocities and 2D barotropic transports in the feedback. The discrepancy is inherently associated with bathymetry, depth-integration, and the need to average over spatial grid points. A simple remedy is proposed and proven to be effective and necessary in realistic coastal applications. In addition to the full two-way nesting, a simplified two-way nesting approach is provided in which only the temperature and salinity are fed back from the nest, and the velocity fields are assumed to self-adjust according to the geostrophic balance. The performance of both approaches is evaluated using the idealized benchmark, propagation of a baroclinic vortex, and an application to the Mississippi River outflowin the northeast Gulf ofMexico, including a comparison with available observations. Discussions are also made on the computational efficiency of the two-way nesting and its sensitivity to the open boundary conditions in regard to noise suppression.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.