Success factors for managing the SSBI challenges of the AQUIRE framework

IF 2.8 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Journal of Decision Systems Pub Date : 2022-03-23 DOI:10.1080/12460125.2022.2057006
Christian Lennerholt, J. V. Laere, Eva Söderström
{"title":"Success factors for managing the SSBI challenges of the AQUIRE framework","authors":"Christian Lennerholt, J. V. Laere, Eva Söderström","doi":"10.1080/12460125.2022.2057006","DOIUrl":null,"url":null,"abstract":"ABSTRACT Self-service business intelligence (SSBI) enables all users, including those with limited technical skills, to perform business intelligence (BI) tasks without the support of BI experts. SSBI reduces pressure on BI experts, gives more freedom to self-reliant users and speeds up decision-making. Recent research has illustrated how organisations experience numerous challenges when trying to obtain SSBI benefits. The AQUIRE framework organises 37 identified SSBI challenges in five categories: A ccess and use of data, Data Q uality, U ser I ndependence, creating R eports and E ducation. SSBI literature does poorly address how these challenges can be tackled. This research study aimed to identify strategies on how to manage those 37 SSBI challenges. The performed case study includes 24 semi-structured interviews with respondents from two organisations which have been heavily involved in SSBI implementation. The results reveal how nine identified SSBI success factors are related to the 37 AQUIRE challenges and how they can be addressed over time.","PeriodicalId":45565,"journal":{"name":"Journal of Decision Systems","volume":"32 1","pages":"491 - 512"},"PeriodicalIF":2.8000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Decision Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12460125.2022.2057006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT Self-service business intelligence (SSBI) enables all users, including those with limited technical skills, to perform business intelligence (BI) tasks without the support of BI experts. SSBI reduces pressure on BI experts, gives more freedom to self-reliant users and speeds up decision-making. Recent research has illustrated how organisations experience numerous challenges when trying to obtain SSBI benefits. The AQUIRE framework organises 37 identified SSBI challenges in five categories: A ccess and use of data, Data Q uality, U ser I ndependence, creating R eports and E ducation. SSBI literature does poorly address how these challenges can be tackled. This research study aimed to identify strategies on how to manage those 37 SSBI challenges. The performed case study includes 24 semi-structured interviews with respondents from two organisations which have been heavily involved in SSBI implementation. The results reveal how nine identified SSBI success factors are related to the 37 AQUIRE challenges and how they can be addressed over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管理AQUIRE框架的SSBI挑战的成功因素
摘要自助式商业智能(SSBI)使所有用户(包括技术技能有限的用户)能够在没有BI专家支持的情况下执行商业智能(BI)任务。SSBI减轻了BI专家的压力,为自力更生的用户提供了更多的自由,并加快了决策速度。最近的研究表明,组织在试图获得SSBI利益时会遇到许多挑战。AQUIRE框架将37个已确定的SSBI挑战分为五类:数据的访问和使用、数据质量、用户独立性、创建报告和教育。SSBI文献并没有很好地说明如何应对这些挑战。本研究旨在确定如何应对这37项SSBI挑战的策略。所进行的案例研究包括对两个组织的受访者进行的24次半结构化访谈,这两个组织都参与了SSBI的实施。研究结果揭示了9个已确定的SSBI成功因素与37个AQUIRE挑战之间的关系,以及如何随着时间的推移加以解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Decision Systems
Journal of Decision Systems OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
6.30
自引率
23.50%
发文量
55
期刊最新文献
Public acceptance of smart home technologies in the UK: a citizens’ jury study Perceptions of facilitators towards adoption of AI-based solutions for sustainable agriculture I am therefore, I do: a fit perspective of decision-making styles and business intelligence usage AI: A knowledge sharing tool for improving employees’ performance Data-driven decision making in advanced manufacturing Systems: modeling and analysis of critical success factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1