The effect of addition of the redox mediator dimethylphenazine on the oxygen reaction in porous carbon electrodes for Li/O2 batteries

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2023-03-01 DOI:10.1016/j.powera.2023.100113
Matthias Augustin , Per Erik Vullum , Fride Vullum-Bruer , Ann Mari Svensson
{"title":"The effect of addition of the redox mediator dimethylphenazine on the oxygen reaction in porous carbon electrodes for Li/O2 batteries","authors":"Matthias Augustin ,&nbsp;Per Erik Vullum ,&nbsp;Fride Vullum-Bruer ,&nbsp;Ann Mari Svensson","doi":"10.1016/j.powera.2023.100113","DOIUrl":null,"url":null,"abstract":"<div><p>Secondary Li–O<sub>2</sub> batteries are promising due to their potentially high theoretical energy density. However, both the discharge (oxygen reduction reaction, ORR) and the recharge reaction (oxygen evolution reaction, OER) are associated with high irreversible losses, and multiple side reactions, depending on the electrolyte of choice. Addition of redox mediators is currently considered a promising route to combat the challenges of the highly irreversible ORR/OER. In this work, the effect of addition of the redox mediator 5,10-dimethylphenazine (DMPZ) on the capacity and reversibility of the oxygen reaction is investigated in porous carbon electrodes. The electrolytes are based on tetraethylene glycol dimethyl ether (TEGDME) as solvent, and either Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as salt, or a combination of LiTFSI and LiNO<sub>3</sub> salt, alternatively dimethyl sulfoxide (DMSO) as solvent, with LiTFSI salt. The addition of DMPZ results in a significant improvement of the reversibility of the ORR/OER reactions for electrolytes based on LiTFSI in DMSO, and LITFSI + LiNO<sub>3</sub> in TEGDME. This is attributed to a depression of the side reactions limiting the recharge reaction in these electrolytes. Post mortem analyses by XRD, SEM, as well as FIB-SEM investigations of cross sections, are used to characterize the products from the side reactions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248523000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary Li–O2 batteries are promising due to their potentially high theoretical energy density. However, both the discharge (oxygen reduction reaction, ORR) and the recharge reaction (oxygen evolution reaction, OER) are associated with high irreversible losses, and multiple side reactions, depending on the electrolyte of choice. Addition of redox mediators is currently considered a promising route to combat the challenges of the highly irreversible ORR/OER. In this work, the effect of addition of the redox mediator 5,10-dimethylphenazine (DMPZ) on the capacity and reversibility of the oxygen reaction is investigated in porous carbon electrodes. The electrolytes are based on tetraethylene glycol dimethyl ether (TEGDME) as solvent, and either Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as salt, or a combination of LiTFSI and LiNO3 salt, alternatively dimethyl sulfoxide (DMSO) as solvent, with LiTFSI salt. The addition of DMPZ results in a significant improvement of the reversibility of the ORR/OER reactions for electrolytes based on LiTFSI in DMSO, and LITFSI + LiNO3 in TEGDME. This is attributed to a depression of the side reactions limiting the recharge reaction in these electrolytes. Post mortem analyses by XRD, SEM, as well as FIB-SEM investigations of cross sections, are used to characterize the products from the side reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原介质二甲非那嗪的加入对锂/氧电池多孔碳电极氧反应的影响
二次锂氧电池由于其潜在的高理论能量密度而前景广阔。然而,放电(氧还原反应,ORR)和充电反应(析氧反应,OER)都伴随着高不可逆损失和多种副反应,这取决于所选择的电解质。添加氧化还原介质目前被认为是对抗高度不可逆的ORR/OER挑战的有希望的途径。本文研究了在多孔碳电极中添加氧化还原介质5,10-二甲基吩嗪(DMPZ)对氧反应容量和可逆性的影响。电解质以四乙二醇二甲醚(TEGDME)为溶剂,锂二(三氟甲烷磺酰)亚胺(LiTFSI)为盐,或LiTFSI和LiNO3盐的组合,或二甲基亚砜(DMSO)为溶剂,与LiTFSI盐。DMPZ的加入显著提高了基于LiTFSI的电解质在DMSO中的ORR/OER反应的可逆性,以及基于LiTFSI + LiNO3的TEGDME中的可逆性。这是由于副反应的抑制限制了这些电解质中的充电反应。采用XRD、SEM和FIB-SEM对反应产物进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1