Preparation and bioactivity of biodegradable β-tricalcium phosphate / calcium carbonate / phosphate bioactive glass composite porous ceramic

Wei Chen, Yan Liu, Jixiang Zhu, Miao Zhou, Xiaoming Chen
{"title":"Preparation and bioactivity of biodegradable β-tricalcium phosphate / calcium carbonate / phosphate bioactive glass composite porous ceramic","authors":"Wei Chen, Yan Liu, Jixiang Zhu, Miao Zhou, Xiaoming Chen","doi":"10.1177/2280800019847071","DOIUrl":null,"url":null,"abstract":"Background: At present, scaffold biomaterials with great biodegradation and biocompatibility are attracting more and more attention. Phosphate bioactive glass (PBG) without Si has been prepared successfully, with a glass transition temperature below 600°C. Calcium carbonate (CC)-based bioceramics with PBG as binder were sintered rapidly at a lower temperature. β-Tricalcium phosphate (β-TCP) has always been used to synthesize clinical ceramics due to its wonderful biocompatibility. Here, we combined the advantages of these raw materials to obtain a novel β-TCP/CC/PBG composite porous ceramic. Method: The preparation process of β-TCP/CC/PBG was optimized by controlling PBG content, NaCl ratio, sintering temperature, and holding time. Ceramic biodegradability was evaluated by soaking in a Tris-HCl buffer in vitro, and biocompatibility of the new material was indicated using CCK-8 tests and a live/dead fluorescence assay. Results: The best mechanical properties of β-TCP/CC/PBG composite porous ceramics were obtained with a PBG content of 60%, at which point the proportion of NaCl exerted the most significant influence on the density, porosity, and mechanical properties of the materials. The weight loss rate of the composite ceramics was 11.30%, which was much higher than that of β-TCP (1.41%) and hydroxyapatite (0.83%) ceramics. CCK-8 test and live/dead fluorescence assay indicated that the composite porous ceramics showed a biocompatibility similar to that of β-TCP ceramics. Conclusion: β-TCP/CC/PBG composite porous ceramics have potential applications in bone regeneration. It is hoped that the novel biomaterial developed in this study will prove useful for the repair of bone defects.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2280800019847071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: At present, scaffold biomaterials with great biodegradation and biocompatibility are attracting more and more attention. Phosphate bioactive glass (PBG) without Si has been prepared successfully, with a glass transition temperature below 600°C. Calcium carbonate (CC)-based bioceramics with PBG as binder were sintered rapidly at a lower temperature. β-Tricalcium phosphate (β-TCP) has always been used to synthesize clinical ceramics due to its wonderful biocompatibility. Here, we combined the advantages of these raw materials to obtain a novel β-TCP/CC/PBG composite porous ceramic. Method: The preparation process of β-TCP/CC/PBG was optimized by controlling PBG content, NaCl ratio, sintering temperature, and holding time. Ceramic biodegradability was evaluated by soaking in a Tris-HCl buffer in vitro, and biocompatibility of the new material was indicated using CCK-8 tests and a live/dead fluorescence assay. Results: The best mechanical properties of β-TCP/CC/PBG composite porous ceramics were obtained with a PBG content of 60%, at which point the proportion of NaCl exerted the most significant influence on the density, porosity, and mechanical properties of the materials. The weight loss rate of the composite ceramics was 11.30%, which was much higher than that of β-TCP (1.41%) and hydroxyapatite (0.83%) ceramics. CCK-8 test and live/dead fluorescence assay indicated that the composite porous ceramics showed a biocompatibility similar to that of β-TCP ceramics. Conclusion: β-TCP/CC/PBG composite porous ceramics have potential applications in bone regeneration. It is hoped that the novel biomaterial developed in this study will prove useful for the repair of bone defects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可生物降解β-磷酸三钙/碳酸钙/磷酸盐生物活性玻璃复合多孔陶瓷的制备及生物活性研究
背景:目前,具有良好生物降解性和生物相容性的支架生物材料越来越受到人们的关注。成功制备了无硅磷酸盐生物活性玻璃(PBG),玻璃化转变温度低于600°C。以PBG为粘结剂的碳酸钙基生物陶瓷在较低的温度下快速烧结。β-磷酸三钙(β-TCP)具有良好的生物相容性,一直被用于合成临床陶瓷。在此,我们结合这些原料的优点,制备了一种新型的β-TCP/CC/PBG复合多孔陶瓷。方法:通过控制PBG含量、NaCl配比、烧结温度和保温时间,优化β-TCP/CC/PBG的制备工艺。通过在体外浸泡在Tris-HCl缓冲液中来评估陶瓷的生物降解性,并通过CCK-8测试和活/死荧光测定来表明新材料的生物相容性。结果:当PBG含量为60%时,β-TCP/CC/PBG复合多孔陶瓷的力学性能最佳,此时NaCl的比例对材料的密度、孔隙率和力学性能影响最大。复合陶瓷的失重率为11.30%,远高于β-TCP(1.41%)和羟基磷灰石(0.83%)陶瓷。CCK-8试验和活/死荧光分析表明,复合多孔陶瓷具有与β-TCP陶瓷相似的生物相容性。结论:β-TCP/CC/PBG复合多孔陶瓷在骨再生中具有潜在的应用前景。希望本研究中开发的新型生物材料将被证明对骨缺损的修复有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
期刊最新文献
Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way The effects of several operative parameters on the grafting of selected grafting agents on a polyamide six (PA6) fiber surface A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1