Development of Mixed-Effects Individual-Tree Diameter Increment Model for Casuarina Equisetifolia Considering the Effects of Tree-Size Diversity, Tree Density Reduction, and Climate
{"title":"Development of Mixed-Effects Individual-Tree Diameter Increment Model for Casuarina Equisetifolia Considering the Effects of Tree-Size Diversity, Tree Density Reduction, and Climate","authors":"Xin Yang, Zhi Du, W. Zeng, Jing-hui Meng","doi":"10.1080/10549811.2022.2050762","DOIUrl":null,"url":null,"abstract":"ABSTRACT Based on the data provided by the 6th (1998), 7th (2003), and 8th (2008) National Forest Inventory (NFI) in Hainan Province, southern China, we developed an individual-tree diameter increment model considering tree-size diversity, tree density reduction, and climate for Casuarina equisetifolia. Since the data was longitudinal and had a nested structure, we used a linear mixed-effects approach to construct the mixed-effects model based on sample plot effects. And we applied the method of 10-fold cross-validation to test the basic model without random effects and final mixed-effects model. The results indicate that natural logarithm of initial DBH (logDBH), sum of basal area of trees larger than objective tree (BAL), soil thickness (ST), Gini coefficient of DBH diversity for residual trees (GCres), and mean coolest month temperature (MCMT) had significant impact on the individual-tree diameter increment for Casuarina equisetifolia. Comparing with basic model, the final mixed-effects model performance was greatly improved. In the model validation, the mixed-effects model also showed a better fitting goodness. The individual-tree diameter increment models of Casuarina equisetifolia developed in this study will provide a good basis for estimating and predicting growth of Casuarina equisetifolia forests over larger areas.","PeriodicalId":54313,"journal":{"name":"Journal of Sustainable Forestry","volume":"42 1","pages":"553 - 572"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Forestry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10549811.2022.2050762","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Based on the data provided by the 6th (1998), 7th (2003), and 8th (2008) National Forest Inventory (NFI) in Hainan Province, southern China, we developed an individual-tree diameter increment model considering tree-size diversity, tree density reduction, and climate for Casuarina equisetifolia. Since the data was longitudinal and had a nested structure, we used a linear mixed-effects approach to construct the mixed-effects model based on sample plot effects. And we applied the method of 10-fold cross-validation to test the basic model without random effects and final mixed-effects model. The results indicate that natural logarithm of initial DBH (logDBH), sum of basal area of trees larger than objective tree (BAL), soil thickness (ST), Gini coefficient of DBH diversity for residual trees (GCres), and mean coolest month temperature (MCMT) had significant impact on the individual-tree diameter increment for Casuarina equisetifolia. Comparing with basic model, the final mixed-effects model performance was greatly improved. In the model validation, the mixed-effects model also showed a better fitting goodness. The individual-tree diameter increment models of Casuarina equisetifolia developed in this study will provide a good basis for estimating and predicting growth of Casuarina equisetifolia forests over larger areas.
期刊介绍:
Journal of Sustainable Forestry publishes peer-reviewed, original research on forest science. While the emphasis is on sustainable use of forest products and services, the journal covers a wide range of topics from the underlying biology and ecology of forests to the social, economic and policy aspects of forestry. Short communications and review papers that provide a clear theoretical, conceptual or methodological contribution to the existing literature are also included in the journal.
Common topics covered in the Journal of Sustainable Forestry include:
• Ecology, management, recreation, restoration and silvicultural systems of all forest types, including urban forests
• All aspects of forest biology, including ecophysiology, entomology, pathology, genetics, tree breeding, and biotechnology
• Wood properties, forest biomass, bioenergy, and carbon sequestration
• Simulation modeling, inventory, quantitative methods, and remote sensing
• Environmental pollution, fire and climate change impacts, and adaptation and mitigation in forests
• Forest engineering, economics, human dimensions, natural resource policy, and planning
Journal of Sustainable Forestry provides an international forum for dialogue between research scientists, forest managers, economists and policy and decision makers who share the common vision of the sustainable use of natural resources.