{"title":"Investigating Casimir effect in sonoluminescence bubble: A brief overview","authors":"C. Pater, C. Javaherian, Saad Tariq","doi":"10.4006/0836-1398-36.2.194","DOIUrl":null,"url":null,"abstract":"The focus of our investigation is the feasibility of examining the Casimir effect in a spherically symmetric sonoluminescence bubble. Our recommendations are based on an in-depth analysis of the relevant literature and experimental data. To forecast the expansion time of the bubble\n under irradiated shock waves, we primarily relied on Schwinger calculations. Furthermore, we addressed the inconsistencies associated with the failure to link sonoluminescence (SL) with the Casimir effect. Our findings indicate that SL is a highly delicate and reliant metric, with its measurement\n relying on variables such as the type of gas used to produce the bubble, fluid and gas temperatures, surface tension, density, pressure, and radius. Based on our analysis, we conclude by proposing adjustments to various gases, particularly at different temperatures, to accurately assess SL\n using Casimir forces and energy. We believe that our study will aid in the acceleration of future investigations into precisely measuring SL bubbles.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4006/0836-1398-36.2.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of our investigation is the feasibility of examining the Casimir effect in a spherically symmetric sonoluminescence bubble. Our recommendations are based on an in-depth analysis of the relevant literature and experimental data. To forecast the expansion time of the bubble
under irradiated shock waves, we primarily relied on Schwinger calculations. Furthermore, we addressed the inconsistencies associated with the failure to link sonoluminescence (SL) with the Casimir effect. Our findings indicate that SL is a highly delicate and reliant metric, with its measurement
relying on variables such as the type of gas used to produce the bubble, fluid and gas temperatures, surface tension, density, pressure, and radius. Based on our analysis, we conclude by proposing adjustments to various gases, particularly at different temperatures, to accurately assess SL
using Casimir forces and energy. We believe that our study will aid in the acceleration of future investigations into precisely measuring SL bubbles.
期刊介绍:
Physics Essays has been established as an international journal dedicated to theoretical and experimental aspects of fundamental problems in Physics and, generally, to the advancement of basic knowledge of Physics. The Journal’s mandate is to publish rigorous and methodological examinations of past, current, and advanced concepts, methods and results in physics research. Physics Essays dedicates itself to the publication of stimulating exploratory, and original papers in a variety of physics disciplines, such as spectroscopy, quantum mechanics, particle physics, electromagnetic theory, astrophysics, space physics, mathematical methods in physics, plasma physics, philosophical aspects of physics, chemical physics, and relativity.