Optimal Identification for Dynamic PV Cell Parameter Based on a Data-Extension-Driven Method

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Photoenergy Pub Date : 2023-06-22 DOI:10.1155/2023/6156333
Yun Long, Youfei Lu, Li Wang, Tao Bao, Chen Chen
{"title":"Optimal Identification for Dynamic PV Cell Parameter Based on a Data-Extension-Driven Method","authors":"Yun Long, Youfei Lu, Li Wang, Tao Bao, Chen Chen","doi":"10.1155/2023/6156333","DOIUrl":null,"url":null,"abstract":"Affected by environmental factors, equipment aging, operating status, etc., the parameters of photovoltaic (PV) models will deviate from the original setting parameters. In order to accurately identify the dynamic parameters of photovoltaics under the general simulation model, traditional parameter identification methods mainly use heuristic intelligent optimization algorithms for direct solution. Due to the limited data collected and the strong randomness of the algorithm, it is easy to make the identification accuracy and stability of photovoltaic parameters difficult to meet the requirements. To this end, this paper proposes an optimal identification method for PV dynamic parameters driven by data expansion. Firstly, the PV external characteristic data is fitted and generalized, which used the generalized regression neural network (GRNN). Then, the extended high-quality data can be used for dynamic parameter identification for PV cell. To confirm the performance of the proposed algorithm in this paper, this paper expands based on the actual external characteristic data of different proportions and uses the general PV simulation model to conduct comparative tests on various commonly used algorithms. The case studies under different scenarios show that the proposed algorithm can provide a more reliable and well-represented fitness function to the metaheuristic algorithms. Therefore, the optimization accuracy and stability of the proposed algorithm for dynamic PV cell parameter identification can be significantly improved simultaneously.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6156333","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Affected by environmental factors, equipment aging, operating status, etc., the parameters of photovoltaic (PV) models will deviate from the original setting parameters. In order to accurately identify the dynamic parameters of photovoltaics under the general simulation model, traditional parameter identification methods mainly use heuristic intelligent optimization algorithms for direct solution. Due to the limited data collected and the strong randomness of the algorithm, it is easy to make the identification accuracy and stability of photovoltaic parameters difficult to meet the requirements. To this end, this paper proposes an optimal identification method for PV dynamic parameters driven by data expansion. Firstly, the PV external characteristic data is fitted and generalized, which used the generalized regression neural network (GRNN). Then, the extended high-quality data can be used for dynamic parameter identification for PV cell. To confirm the performance of the proposed algorithm in this paper, this paper expands based on the actual external characteristic data of different proportions and uses the general PV simulation model to conduct comparative tests on various commonly used algorithms. The case studies under different scenarios show that the proposed algorithm can provide a more reliable and well-represented fitness function to the metaheuristic algorithms. Therefore, the optimization accuracy and stability of the proposed algorithm for dynamic PV cell parameter identification can be significantly improved simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据扩展驱动的光伏电池动态参数最优辨识
受环境因素、设备老化、运行状态等影响,光伏(PV)机型的参数会偏离原有的设定参数。为了准确辨识一般仿真模型下的光伏动态参数,传统的参数辨识方法主要采用启发式智能优化算法直接求解。由于采集的数据有限,算法随机性强,容易使光伏参数的识别精度和稳定性难以满足要求。为此,本文提出了一种由数据扩展驱动的PV动态参数最优辨识方法。首先,利用广义回归神经网络(GRNN)对PV外部特征数据进行拟合和泛化;然后,将扩展后的高质量数据用于光伏电池的动态参数辨识。为了验证本文提出的算法的性能,本文根据不同比例的实际外部特征数据展开,使用通用PV仿真模型对各种常用算法进行对比试验。不同场景下的案例研究表明,该算法能够提供一个更可靠、更能代表元启发式算法的适应度函数。因此,该算法在动态光伏电池参数辨识的优化精度和稳定性均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
期刊最新文献
In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. IGWO-VINC Algorithm Applied to MPPT Strategy for PV System Enhancing CsSn0.5Ge0.5I3 Perovskite Solar Cell Performance via Cu2O Hole Transport Layer Integration Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software Maximizing Conversion Efficiency: A Numerical Analysis on P+ a-SiC/i Interface/n-Si Heterojunction Solar Cells with AMPS-1D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1