DEVELOPMENT OF ANNUAL URBAN HEAT ISLAND IN BAGHDAD UNDER CLIMATE CHANGE

IF 1 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Journal of Environmental Engineering and Landscape Management Pub Date : 2022-03-17 DOI:10.3846/jeelm.2022.16374
B. I. Wahab, Salwa Naif, M. Al-Jiboori
{"title":"DEVELOPMENT OF ANNUAL URBAN HEAT ISLAND IN BAGHDAD UNDER CLIMATE CHANGE","authors":"B. I. Wahab, Salwa Naif, M. Al-Jiboori","doi":"10.3846/jeelm.2022.16374","DOIUrl":null,"url":null,"abstract":"This study investigated the confirmation of climate change by analyzing the long-term records of annual means of temperature taken from synoptic station located at International Baghdad Airport (rural site) available for the period from 1978 to 2019. Furthermore, based on annual temperature data recorded by automatic weather station installed at Mustansiriyah University (urban station), available for the period 2008–2019, the difference between urban and rural temperatures called as urban heat island (UHI) intensity was annually calculated. Statistic descriptive methods including temperature trend, percentile function and R-square were employed to recognize the contribution of UHI in enhancing the local warming climate. The results show that there was a warming trend of 0.052 °C/year for period of 42 years and 0.02 °C/year for recent 12 years at rural station which is lower than 0.13 °C/year observed at urban station. Also the results for annual UHI were found to be always positive intensity which ranges from 0.8 to 2.4 °C with a mean value of 1.78 °C. As a result of high annual UHI intensity, hot day events during 2008–2019 were extracted from daily temperatures exceeding of threshold value of 37.5 °C that dominate in summer months with totally 204 events and with an annual average of 17 days. Finally, under the continuing local warming climate, potential effects caused by UHI and its mitigation strategies are further presented.","PeriodicalId":15653,"journal":{"name":"Journal of Environmental Engineering and Landscape Management","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Landscape Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3846/jeelm.2022.16374","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

This study investigated the confirmation of climate change by analyzing the long-term records of annual means of temperature taken from synoptic station located at International Baghdad Airport (rural site) available for the period from 1978 to 2019. Furthermore, based on annual temperature data recorded by automatic weather station installed at Mustansiriyah University (urban station), available for the period 2008–2019, the difference between urban and rural temperatures called as urban heat island (UHI) intensity was annually calculated. Statistic descriptive methods including temperature trend, percentile function and R-square were employed to recognize the contribution of UHI in enhancing the local warming climate. The results show that there was a warming trend of 0.052 °C/year for period of 42 years and 0.02 °C/year for recent 12 years at rural station which is lower than 0.13 °C/year observed at urban station. Also the results for annual UHI were found to be always positive intensity which ranges from 0.8 to 2.4 °C with a mean value of 1.78 °C. As a result of high annual UHI intensity, hot day events during 2008–2019 were extracted from daily temperatures exceeding of threshold value of 37.5 °C that dominate in summer months with totally 204 events and with an annual average of 17 days. Finally, under the continuing local warming climate, potential effects caused by UHI and its mitigation strategies are further presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化下巴格达城市年度热岛的发展
本研究通过分析巴格达国际机场(农村站点)天气观测站1978 - 2019年的年平均气温长期记录,对气候变化的确证进行了探讨。此外,基于安装在穆斯坦西里耶大学(城市站)的自动气象站记录的2008-2019年的年度温度数据,每年计算城市和农村温度之间的差异,称为城市热岛强度(UHI)。采用温度趋势、百分位函数和r平方等统计描述方法,认识了热岛热岛对局部变暖气候的促进作用。结果表明,近12年农村站的增温趋势分别为0.052°C/年和0.02°C/年,低于城市站的0.13°C/年。年热岛热岛强度在0.8 ~ 2.4°C之间,平均为1.78°C,均为正强度。由于全年热岛热岛强度高,2008-2019年期间的热天事件提取自超过37.5°C阈值的日温度,这些事件主要发生在夏季,共有204个事件,年平均为17天。最后,在局部气候持续变暖的情况下,进一步提出了热岛的潜在影响及其缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: The Journal of Environmental Engineering and Landscape Management publishes original research about the environment with emphasis on sustainability.
期刊最新文献
EVALUATION OF WATER PERMEABILITY IN COMPACTED SAND-BENTONITE LINERS FROM LANDFILL USING PLANNING AND FACTORIAL ANALYSIS ARBUSCULAR MYCORRHIZAL SYMBIOSIS OF VIOLA BAOSHANENSIS AT BAOSHAN PB/ZN MINE IN CHINA GREEN SPACE EXPOSURE’S INFLUENCE ON MENTAL WELL-BEING DURING COVID-19 CAMPUS LOCKDOWNS: A SATISFACTION MEDIATING PATHWAY EVALUATING THE PERFORMANCE OF MACHINE LEARNING APPROACHES IN PREDICTING ALBANIAN SHKUMBINI RIVER'S WATERS USING WATER QUALITY INDEX MODEL THE ASSESSMENT OF SCENIC ATTRACTIVENESS ON COASTAL WAYS: A CASE STUDY OF PERSEMBE-BOLAMAN (ORDU-TURKEY)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1