Zhu Dan, Xu Wei-yuan, Chen Wenjuan, Liu Jiang, P. Shilong
{"title":"Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network","authors":"Zhu Dan, Xu Wei-yuan, Chen Wenjuan, Liu Jiang, P. Shilong","doi":"10.12000/JR19028","DOIUrl":null,"url":null,"abstract":"Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network ZHU Dan XU Weiyuan CHEN Wenjuan LIU Jiang PAN Shilong (Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China) Abstract: A distributed multi-target localization system based on optical Wavelength Division Multiplexing (WDM) network is demonstrated. The wideband orthogonal waveforms are generated by introducing the chaotic OptoElectronic Oscillator (OEO). The optical WDM network is introduced to transmit the wideband signals from multiple distributed transmitting and receiving units to the central station for processing, and the accurate localization of multiple targets is achieved based on the time of arrival localization method. The multiple optical carriers are generated at the central station, the complex processing to achieve the highprecision of the target localization is supported by the resources at the central station, and the remote transmitting and receiving units are simplified. Moreover, a proof of concept of the distributed multi-target localization system based on optical WDM network is obtained. The localization system comprising two transmitters and two receivers is experimentally established. The orthogonal chaotic waveforms with the frequency range of 3.1~10.6 GHz are successfully generated from the chaotic OEOs. The two-dimensional localization of two targets is realized via the maximum positioning error of 7.09 cm. Additionally, the reconfiguration of the system is experimentally verified.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12000/JR19028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network ZHU Dan XU Weiyuan CHEN Wenjuan LIU Jiang PAN Shilong (Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China) Abstract: A distributed multi-target localization system based on optical Wavelength Division Multiplexing (WDM) network is demonstrated. The wideband orthogonal waveforms are generated by introducing the chaotic OptoElectronic Oscillator (OEO). The optical WDM network is introduced to transmit the wideband signals from multiple distributed transmitting and receiving units to the central station for processing, and the accurate localization of multiple targets is achieved based on the time of arrival localization method. The multiple optical carriers are generated at the central station, the complex processing to achieve the highprecision of the target localization is supported by the resources at the central station, and the remote transmitting and receiving units are simplified. Moreover, a proof of concept of the distributed multi-target localization system based on optical WDM network is obtained. The localization system comprising two transmitters and two receivers is experimentally established. The orthogonal chaotic waveforms with the frequency range of 3.1~10.6 GHz are successfully generated from the chaotic OEOs. The two-dimensional localization of two targets is realized via the maximum positioning error of 7.09 cm. Additionally, the reconfiguration of the system is experimentally verified.