{"title":"Structural, optical and electrical properties of anhydrous GdCl3 doped PEO polymer electrolyte films","authors":"M. Arasakumari","doi":"10.15251/jor.2022.184.553","DOIUrl":null,"url":null,"abstract":"GdCl3 doped PEO polymer electrolyte films were prepared using solution casting technique. XRD patterns, FTIR spectra and optical absorption studies confirm an amorphous nature and the formation of the polymer electrolyte films. The ionic conductivity increases with the GdCl3 content and the maximum value at room temperature is about 1.8310-2 S/cm for 20 mol% GdCl3doped PEO film. This value is more than two orders of magnitude larger than the ionic conductivity of NASICON type Gd-doped solid electrolytes and other polymer electrolytes. The results suggest that the Gd3+ doped PEO polymer electrolyte films are good candidates for future electrochemical devices.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.184.553","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
GdCl3 doped PEO polymer electrolyte films were prepared using solution casting technique. XRD patterns, FTIR spectra and optical absorption studies confirm an amorphous nature and the formation of the polymer electrolyte films. The ionic conductivity increases with the GdCl3 content and the maximum value at room temperature is about 1.8310-2 S/cm for 20 mol% GdCl3doped PEO film. This value is more than two orders of magnitude larger than the ionic conductivity of NASICON type Gd-doped solid electrolytes and other polymer electrolytes. The results suggest that the Gd3+ doped PEO polymer electrolyte films are good candidates for future electrochemical devices.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.