Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2023-08-01 DOI:10.1016/j.spasta.2023.100758
Georges Bresson , Anoop Chaturvedi
{"title":"Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure","authors":"Georges Bresson ,&nbsp;Anoop Chaturvedi","doi":"10.1016/j.spasta.2023.100758","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Jin et al. (2020) proposed an efficient, distribution-free least squares estimation<span><span> method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled </span>panel data model<span>. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the </span></span></span>fixed effects model<span>, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO</span></span><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions per capita.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"56 ","pages":"Article 100758"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000337","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Jin et al. (2020) proposed an efficient, distribution-free least squares estimation method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled panel data model. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the fixed effects model, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO2 emissions per capita.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态时空面板数据模型:基于特征分解的偏差校正最小二乘法
Jin等人(2020)提出了一种有效的、无分布的最小二乘估计方法,该方法利用动态时空池面板数据模型中权重矩阵的特征分解。与众所周知的工具变量技术相比,他们的三步方法非常强大。不幸的是,对于短面板,他们的方法可能导致自回归时间依赖参数和时空扩散参数的有偏差估计,即使使用他们的偏差校正估计器。我们提出了一种偏差校正方法,灵感来自Jin等人(2020)程序中的Bun和Carree(2005, 2006)。我们还将基于特征分解的最小二乘方法推广到随机效应模型、固定效应模型、mundlaktype和Chamberlain-type相关随机效应模型、Hausman-Taylor模型和常见相关效应模型。大量的蒙特卡罗实验表明,所提出的估计器具有良好的有限样本特性。在1991年至2015年的81个国家的面板上,使用具有共同相关效应的动态时空STIRPAT模型,对污染与经济活动之间的联系进行了应用,显示了这种方法的相关性。它强调了人类活动在污染增长中的重要性,而重新造林是减少人均二氧化碳排放量的最重要杠杆之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Bayesian analysis and variable selection for spatial count data with an application to Rio de Janeiro gun violence Derivative-based spatial mediation with INLA-SPDE A Hotelling spatial scan statistic for functional data: Application to economic and climate data Clustered factor analysis for multivariate spatial data Statistical inference of partially linear time-varying coefficients spatial autoregressive panel data model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1