Mahdi Mirzaaghaei, F. Qods, H. Arabi, M. Milani, B. Mohammad Sadeghi, M. Nourbakhsh
{"title":"Investigation of mechanical and microstructure characteristics of Ti64-bagasse ash composite produced by the SPS process","authors":"Mahdi Mirzaaghaei, F. Qods, H. Arabi, M. Milani, B. Mohammad Sadeghi, M. Nourbakhsh","doi":"10.1080/00325899.2022.2163551","DOIUrl":null,"url":null,"abstract":"ABSTRACT The aim of this study was to investigate and fabricate a Ti64-bagasse ash (BA) composite using the spark plasma sintering (SPS) method. Accordingly, the samples were fabricated under partial densification. XRD analysis, optical and electron microscopy (SEM), hardness measurement, and bending test were used to study the phases formed, the morphology of powders, microstructure, and mechanical properties of the samples, respectively. The results showed that increasing the volume percentage of bagasse ash affected the mechanical properties of the samples in addition to the microstructure. It was also observed that in the samples containing 5 vol.% bagasse ash, in addition to a significant decrease in the value of elastic modulus, the sample fabricated contained pores with a wall composed of ceramic and metal. GRAPHICAL ABSTRACT","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"248 - 262"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2163551","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The aim of this study was to investigate and fabricate a Ti64-bagasse ash (BA) composite using the spark plasma sintering (SPS) method. Accordingly, the samples were fabricated under partial densification. XRD analysis, optical and electron microscopy (SEM), hardness measurement, and bending test were used to study the phases formed, the morphology of powders, microstructure, and mechanical properties of the samples, respectively. The results showed that increasing the volume percentage of bagasse ash affected the mechanical properties of the samples in addition to the microstructure. It was also observed that in the samples containing 5 vol.% bagasse ash, in addition to a significant decrease in the value of elastic modulus, the sample fabricated contained pores with a wall composed of ceramic and metal. GRAPHICAL ABSTRACT
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.