{"title":"Polymer Electrolyte for Lithium Metal Batteries Based on Nafion and N,N-Dimethylacetamide","authors":"D. Yu. Voropaeva, A. B. Yaroslavtsev","doi":"10.1134/S2517751622040102","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries are a promising replacement for lithium-ion batteries due to their ability to achieve high energy densities. A significant issue of this type of battery is dendrite growth through the separator, which makes these batteries unsafe and limits their commercial application. In this work, a single-ion conducting polymer electrolyte based on a cation-exchange membrane Nafion solvated by a ternary mixture of ethylene carbonate/dimethyl carbonate/<i>N</i>,<i>N</i>-dimethylacetamide has been obtained. It has an ionic conductivity of 1.8 mS cm<sup>–1</sup> at 25°C and an electrochemical stability window of 4.1 V. It has been shown that the symmetrical Li/Li cell operates stably at a current density of 0.1 mA cm<sup>–2</sup> for >350 h.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 4","pages":"276 - 279"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Lithium metal batteries are a promising replacement for lithium-ion batteries due to their ability to achieve high energy densities. A significant issue of this type of battery is dendrite growth through the separator, which makes these batteries unsafe and limits their commercial application. In this work, a single-ion conducting polymer electrolyte based on a cation-exchange membrane Nafion solvated by a ternary mixture of ethylene carbonate/dimethyl carbonate/N,N-dimethylacetamide has been obtained. It has an ionic conductivity of 1.8 mS cm–1 at 25°C and an electrochemical stability window of 4.1 V. It has been shown that the symmetrical Li/Li cell operates stably at a current density of 0.1 mA cm–2 for >350 h.
锂金属电池是锂离子电池的一个很有前途的替代品,因为它们能够实现高能量密度。这种类型的电池的一个重要问题是树突通过隔板生长,这使得这些电池不安全,并限制了它们的商业应用。本文以阳离子交换膜Nafion为基础,用碳酸乙烯/碳酸二甲酯/N,N-二甲基乙酰胺三元混合物溶剂化制备了单离子导电聚合物电解质。在25℃时离子电导率为1.8 mS cm-1,电化学稳定窗口为4.1 V。结果表明,对称锂/锂电池在0.1 mA cm-2的电流密度下稳定工作350小时。
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.