Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue
{"title":"Potential Effects of Permanent Daylight Savings Time on Daylight Exposure and Risk during Commute Times across United States Cities in 2023–2024 Using a Biomathematical Model of Fatigue","authors":"J. Devine, J. Choynowski, S. Hursh","doi":"10.3390/safety9030059","DOIUrl":null,"url":null,"abstract":"Background: Permanent Daylight Savings Time (DST) may improve road safety by providing more daylight in the evening but could merely shift risk to morning commutes or increase risk due to fatigue and circadian misalignment. Methods: To identify how potential daylight exposure and fatigue risk could differ between permanent DST versus permanent Standard Time (ST) or current time arrangements (CTA), generic work and school schedules in five United States cities were modeled in SAFTE-FAST biomathematical modeling software. Commute data were categorized by morning (0700–0900) and evening (1600–1800) rush hours. Results: Percent darkness was greater under DST compared with ST for the total waking day (t = 2.59, p = 0.03) and sleep periods (t = 2.46, p = 0.045). Waketimes occurred before sunrise 63 ± 41% percent of the time under DST compared with CTA (42 ± 37%) or ST (33 ± 38%; F(2,74) = 76.37; p < 0.001). Percent darkness was greater during morning (16 ± 31%) and lower during evening rush hour (0 ± 0%) in DST compared with either CTA (morning: 7 ± 23%; evening: 7 ± 14%) or ST (morning: 7 ± 23%; evening: 7 ± 15%). Discussion: Morning rush hour overlaps with students’ commutes and shift workers’ reverse commutes, which may increase traffic congestion and risk compared with evening rush hour. Switching to permanent DST may be more disruptive than either switching to ST or keeping CTA without noticeable benefit to fatigue or potential daylight exposure.","PeriodicalId":36827,"journal":{"name":"Safety","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/safety9030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Permanent Daylight Savings Time (DST) may improve road safety by providing more daylight in the evening but could merely shift risk to morning commutes or increase risk due to fatigue and circadian misalignment. Methods: To identify how potential daylight exposure and fatigue risk could differ between permanent DST versus permanent Standard Time (ST) or current time arrangements (CTA), generic work and school schedules in five United States cities were modeled in SAFTE-FAST biomathematical modeling software. Commute data were categorized by morning (0700–0900) and evening (1600–1800) rush hours. Results: Percent darkness was greater under DST compared with ST for the total waking day (t = 2.59, p = 0.03) and sleep periods (t = 2.46, p = 0.045). Waketimes occurred before sunrise 63 ± 41% percent of the time under DST compared with CTA (42 ± 37%) or ST (33 ± 38%; F(2,74) = 76.37; p < 0.001). Percent darkness was greater during morning (16 ± 31%) and lower during evening rush hour (0 ± 0%) in DST compared with either CTA (morning: 7 ± 23%; evening: 7 ± 14%) or ST (morning: 7 ± 23%; evening: 7 ± 15%). Discussion: Morning rush hour overlaps with students’ commutes and shift workers’ reverse commutes, which may increase traffic congestion and risk compared with evening rush hour. Switching to permanent DST may be more disruptive than either switching to ST or keeping CTA without noticeable benefit to fatigue or potential daylight exposure.