Streamable Speech Representation Disentanglement and Multi-Level Prosody Modeling for Live One-Shot Voice Conversion

Haoquan Yang, Liqun Deng, Y. Yeung, Nianzu Zheng, Yong Xu
{"title":"Streamable Speech Representation Disentanglement and Multi-Level Prosody Modeling for Live One-Shot Voice Conversion","authors":"Haoquan Yang, Liqun Deng, Y. Yeung, Nianzu Zheng, Yong Xu","doi":"10.21437/interspeech.2022-10277","DOIUrl":null,"url":null,"abstract":"This paper takes efforts to tackle the challenge of “live” oneshot voice conversion (VC), which performs conversion across arbitrary speakers in a streaming way while retaining high intelligibility and naturalness. We propose a hybrid unsupervised and supervised learning based VC model with a two-stage model training strategy. Specially, we first employ an unsupervised disentanglement framework to separate speech representations of different granularities Experimental results demonstrate that our proposed method achieves comparable performance on speech naturalness, intelligibility and speaker similarity with offline VC solutions, with sufficient efficiency for practical real-time applications. Audio samples are available online for demonstration.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2578-2582"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper takes efforts to tackle the challenge of “live” oneshot voice conversion (VC), which performs conversion across arbitrary speakers in a streaming way while retaining high intelligibility and naturalness. We propose a hybrid unsupervised and supervised learning based VC model with a two-stage model training strategy. Specially, we first employ an unsupervised disentanglement framework to separate speech representations of different granularities Experimental results demonstrate that our proposed method achieves comparable performance on speech naturalness, intelligibility and speaker similarity with offline VC solutions, with sufficient efficiency for practical real-time applications. Audio samples are available online for demonstration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时单次语音转换的可流语音表示解纠缠和多级韵律建模
本文致力于解决“实时”单声道语音转换(VC)的挑战,该转换以流式方式在任意扬声器之间进行转换,同时保持高清晰度和自然度。我们提出了一种基于无监督和有监督学习的混合VC模型,该模型具有两阶段的模型训练策略。特别地,我们首先使用无监督解纠缠框架来分离不同粒度的语音表示。实验结果表明,我们提出的方法在语音自然度、可懂度和说话人相似性方面的性能与离线VC解决方案相当,在实际实时应用中具有足够的效率。音频样本可在线演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1