Controllability Criteria for Nonlinear Impulsive Fractional Differential Systems with Distributed Delays in Controls

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-01-15 DOI:10.3390/mca28010013
A. Debbouche, B. Vadivoo, V. Fedorov, V. Antonov
{"title":"Controllability Criteria for Nonlinear Impulsive Fractional Differential Systems with Distributed Delays in Controls","authors":"A. Debbouche, B. Vadivoo, V. Fedorov, V. Antonov","doi":"10.3390/mca28010013","DOIUrl":null,"url":null,"abstract":"We establish a class of nonlinear fractional differential systems with distributed time delays in the controls and impulse effects. We discuss the controllability criteria for both linear and nonlinear systems. The main results required a suitable Gramian matrix defined by the Mittag–Leffler function, using the standard Laplace transform and Schauder fixed-point techniques. Further, we provide an illustrative example supported by graphical representations to show the validity of the obtained abstract results.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a class of nonlinear fractional differential systems with distributed time delays in the controls and impulse effects. We discuss the controllability criteria for both linear and nonlinear systems. The main results required a suitable Gramian matrix defined by the Mittag–Leffler function, using the standard Laplace transform and Schauder fixed-point techniques. Further, we provide an illustrative example supported by graphical representations to show the validity of the obtained abstract results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有分布时滞的非线性脉冲分数阶微分系统的可控性准则
我们建立了一类在控制和脉冲效应下具有分布时滞的非线性分数阶微分系统。我们讨论了线性和非线性系统的可控性准则。主要结果需要使用标准拉普拉斯变换和Schauder定点技术,由Mittag–Leffler函数定义一个合适的Gramian矩阵。此外,我们提供了一个由图形表示支持的说明性示例,以显示所获得的抽象结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1