A Descriptive Study of High-Frequency Trade and Quote Option Data*

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2021-03-25 DOI:10.1093/JJFINEC/NBAA036
T. Andersen, Ilya Archakov, Leon Eric Grund, N. Hautsch, Yifan Li, S. Nasekin, Ingmar Nolte, Manh Cuong Pham, Stephen L Taylor, V. Todorov
{"title":"A Descriptive Study of High-Frequency Trade and Quote Option Data*","authors":"T. Andersen, Ilya Archakov, Leon Eric Grund, N. Hautsch, Yifan Li, S. Nasekin, Ingmar Nolte, Manh Cuong Pham, Stephen L Taylor, V. Todorov","doi":"10.1093/JJFINEC/NBAA036","DOIUrl":null,"url":null,"abstract":"This paper provides a guide to high frequency option trade and quote data disseminated by the \nOptions Price Reporting Authority (OPRA). We present a comprehensive overview of the U.S. option market, including details on market regulation and the trading processes for all 16 constituent option exchanges. We review the existing literature that utilizes high-frequency options data, summarize the general structure of the OPRA dataset and present a thorough empirical description of the observed option trades and quotes for a selected sample of underlying assets that contains more than 25 billion records. We outline several types of irregular observations and provide recommendations for data filtering and cleaning. Finally, we illustrate the usefulness of the high frequency option data with two empirical applications: option-implied variance estimation and risk-neutral density estimation. Both applications highlight the rich information content of the high frequency OPRA data.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"19 1","pages":"128-177"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/JJFINEC/NBAA036","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/JJFINEC/NBAA036","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

Abstract

This paper provides a guide to high frequency option trade and quote data disseminated by the Options Price Reporting Authority (OPRA). We present a comprehensive overview of the U.S. option market, including details on market regulation and the trading processes for all 16 constituent option exchanges. We review the existing literature that utilizes high-frequency options data, summarize the general structure of the OPRA dataset and present a thorough empirical description of the observed option trades and quotes for a selected sample of underlying assets that contains more than 25 billion records. We outline several types of irregular observations and provide recommendations for data filtering and cleaning. Finally, we illustrate the usefulness of the high frequency option data with two empirical applications: option-implied variance estimation and risk-neutral density estimation. Both applications highlight the rich information content of the high frequency OPRA data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频交易和报价期权数据的描述性研究*
本文为期权价格报告机构(OPRA)发布的高频期权交易和报价数据提供了指南。我们对美国期权市场进行了全面的概述,包括市场监管的细节和所有16家期权交易所的交易流程。我们回顾了利用高频期权数据的现有文献,总结了OPRA数据集的一般结构,并对包含超过250亿条记录的基础资产样本的观察期权交易和报价进行了彻底的实证描述。我们概述了几种类型的不规则观测,并提供了数据过滤和清理的建议。最后,我们通过期权隐含方差估计和风险中性密度估计两种经验应用来说明高频期权数据的实用性。这两种应用都突出了高频OPRA数据丰富的信息内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1