{"title":"The geography and progression of blowouts in the coastal dunes along the eastern shore of Lake Michigan since 1938","authors":"K. McKeehan, A. Arbogast","doi":"10.1017/qua.2023.10","DOIUrl":null,"url":null,"abstract":"Abstract Coastal dunes along Lake Michigan's eastern shoreline are a unique system comprising perhaps the largest complex of freshwater coastal dunes in the world. Here, we examine the blowouts in this region and determine how they have evolved since the 1930s. We conducted a spatiotemporal analysis of 435 blowouts by comparing repeat aerial images of the coast beginning in 1938. Using an unsupervised machine learning classification known as iso-clustering, we mapped blowout morphologies at three timestamps: 1938, 1986–1988, and 2018. We then compared the blowout geographies through a technique known as a spatial-temporal analysis of moving polygons (STAMP) model, which allowed us to analyze how each blowout changed in time and space. Results show blowouts have contracted ~37% in size since 1938, mostly at the expense of vegetation, with many fragmenting. These findings comport with other regional and global studies detailing a trend in coastal dune stabilization from vegetation and suggest that an increase in precipitation or other environment drivers could be responsible. Moreover, we detected no new blowouts since 1938 along the ~500 km shoreline or on any of the Lake Michigan islands. This suggests blowouts here are artifacts of premodern conditions, perhaps the result of prior stormier or drier eras.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"115 1","pages":"25 - 45"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/qua.2023.10","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Coastal dunes along Lake Michigan's eastern shoreline are a unique system comprising perhaps the largest complex of freshwater coastal dunes in the world. Here, we examine the blowouts in this region and determine how they have evolved since the 1930s. We conducted a spatiotemporal analysis of 435 blowouts by comparing repeat aerial images of the coast beginning in 1938. Using an unsupervised machine learning classification known as iso-clustering, we mapped blowout morphologies at three timestamps: 1938, 1986–1988, and 2018. We then compared the blowout geographies through a technique known as a spatial-temporal analysis of moving polygons (STAMP) model, which allowed us to analyze how each blowout changed in time and space. Results show blowouts have contracted ~37% in size since 1938, mostly at the expense of vegetation, with many fragmenting. These findings comport with other regional and global studies detailing a trend in coastal dune stabilization from vegetation and suggest that an increase in precipitation or other environment drivers could be responsible. Moreover, we detected no new blowouts since 1938 along the ~500 km shoreline or on any of the Lake Michigan islands. This suggests blowouts here are artifacts of premodern conditions, perhaps the result of prior stormier or drier eras.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.