Xuhui Zhu, J. Shang, Y. Sun, Feng Li, Jin-Xing Liu, Shasha Yuan
{"title":"PSO-CFDP: A Particle Swarm Optimization-Based Automatic Density Peaks Clustering Method for Cancer Subtyping","authors":"Xuhui Zhu, J. Shang, Y. Sun, Feng Li, Jin-Xing Liu, Shasha Yuan","doi":"10.1159/000501481","DOIUrl":null,"url":null,"abstract":"Cancer subtyping is of great importance for the prediction, diagnosis, and precise treatment of cancer patients. Many clustering methods have been proposed for cancer subtyping. In 2014, a clustering algorithm named Clustering by Fast Search and Find of Density Peaks (CFDP) was proposed and published in Science, which has been applied to cancer subtyping and achieved attractive results. However, CFDP requires to set two key parameters (cluster centers and cutoff distance) manually, while their optimal values are difficult to be determined. To overcome this limitation, an automatic clustering method named PSO-CFDP is proposed in this paper, in which cluster centers and cutoff distance are automatically determined by running an improved particle swarm optimization (PSO) algorithm multiple times. Experiments using PSO-CFDP, as well as LR-CFDP, STClu, CH-CCFDAC, and CFDP, were performed on four benchmark datasets and two real cancer gene expression datasets. The results show that PSO-CFDP can determine cluster centers and cutoff distance automatically within controllable time/cost and, therefore, improve the accuracy of cancer subtyping.","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"84 1","pages":"9 - 20"},"PeriodicalIF":1.1000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000501481","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000501481","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 5
Abstract
Cancer subtyping is of great importance for the prediction, diagnosis, and precise treatment of cancer patients. Many clustering methods have been proposed for cancer subtyping. In 2014, a clustering algorithm named Clustering by Fast Search and Find of Density Peaks (CFDP) was proposed and published in Science, which has been applied to cancer subtyping and achieved attractive results. However, CFDP requires to set two key parameters (cluster centers and cutoff distance) manually, while their optimal values are difficult to be determined. To overcome this limitation, an automatic clustering method named PSO-CFDP is proposed in this paper, in which cluster centers and cutoff distance are automatically determined by running an improved particle swarm optimization (PSO) algorithm multiple times. Experiments using PSO-CFDP, as well as LR-CFDP, STClu, CH-CCFDAC, and CFDP, were performed on four benchmark datasets and two real cancer gene expression datasets. The results show that PSO-CFDP can determine cluster centers and cutoff distance automatically within controllable time/cost and, therefore, improve the accuracy of cancer subtyping.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.