{"title":"Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network","authors":"Ziye Yu , Weitao Wang , Yini Chen","doi":"10.1016/j.eqs.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic phase pickers based on deep neural networks have been extensively used recently, demonstrating their advantages on both performance and efficiency. However, these pickers are trained with and applied to different data. A comprehensive benchmark based on a single dataset is therefore lacking. Here, using the recently released DiTing dataset, we analyzed performances of seven phase pickers with different network structures, the efficiencies are also evaluated using both CPU and GPU devices. Evaluations based on <em>F</em><sub>1</sub>-scores reveal that the recurrent neural network (RNN) and EQTransformer exhibit the best performance, likely owing to their large receptive fields. Similar performances are observed among PhaseNet (UNet), UNet++, and the lightweight phase picking network (LPPN). However, the LPPN models are the most efficient. The RNN and EQTransformer have similar speeds, which are slower than those of the LPPN and PhaseNet. UNet++ requires the most computational effort among the pickers. As all of the pickers perform well after being trained with a large-scale dataset, users may choose the one suitable for their applications. For beginners, we provide a tutorial on training and validating the pickers using the DiTing dataset. We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users. All of our models are open-source and publicly accessible.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 2","pages":"Pages 113-131"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003573","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Seismic phase pickers based on deep neural networks have been extensively used recently, demonstrating their advantages on both performance and efficiency. However, these pickers are trained with and applied to different data. A comprehensive benchmark based on a single dataset is therefore lacking. Here, using the recently released DiTing dataset, we analyzed performances of seven phase pickers with different network structures, the efficiencies are also evaluated using both CPU and GPU devices. Evaluations based on F1-scores reveal that the recurrent neural network (RNN) and EQTransformer exhibit the best performance, likely owing to their large receptive fields. Similar performances are observed among PhaseNet (UNet), UNet++, and the lightweight phase picking network (LPPN). However, the LPPN models are the most efficient. The RNN and EQTransformer have similar speeds, which are slower than those of the LPPN and PhaseNet. UNet++ requires the most computational effort among the pickers. As all of the pickers perform well after being trained with a large-scale dataset, users may choose the one suitable for their applications. For beginners, we provide a tutorial on training and validating the pickers using the DiTing dataset. We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users. All of our models are open-source and publicly accessible.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.