Witold F. Krajewski , Ganesh R. Ghimire , Ibrahim Demir , Ricardo Mantilla
{"title":"Real-time streamflow forecasting: AI vs. Hydrologic insights","authors":"Witold F. Krajewski , Ganesh R. Ghimire , Ibrahim Demir , Ricardo Mantilla","doi":"10.1016/j.hydroa.2021.100110","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a set of simple benchmarks for the evaluation of data-based models for real-time streamflow forecasting, such as those developed with sophisticated Artificial Intelligence (AI) algorithms. The benchmarks are also data-based and provide context to judge incremental improvements in the performance metrics from the more complicated approaches. The benchmarks include temporal and spatial persistence, persistence corrected for baseflow and streamflow, as well as river distance weighted runoff obtained from space-time distributed rainfall. In the development of the benchmarks, we use basic hydrologic insights such as flow aggregation by the river network, scale-dependence in basin response, streamflow partitioning into quick flow and baseflow, water travel time, and rainfall averaging by the basin width function. The study uses 140 streamflow gauges in Iowa that cover a range of basin scales between 7 and 37,000 km<sup>2</sup>. The data cover 17 years. This work demonstrates that the proposed benchmarks can provide good performance according to several commonly used metrics. For example, streamflow forecasting at half of the test locations across years achieves a Kling-Gupta Efficiency (KGE) score of 0.6 or higher at one-day ahead lead time, and 20% of cases reach the KGE of 0.8 or higher. The proposed benchmarks are easy to implement and should prove useful for developers of data-based as well as physics-based hydrologic models and real-time data assimilation techniques.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915521000389/pdfft?md5=51c92e2199a5b69c5dd3fcfb0be2ebc6&pid=1-s2.0-S2589915521000389-main.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915521000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper, we propose a set of simple benchmarks for the evaluation of data-based models for real-time streamflow forecasting, such as those developed with sophisticated Artificial Intelligence (AI) algorithms. The benchmarks are also data-based and provide context to judge incremental improvements in the performance metrics from the more complicated approaches. The benchmarks include temporal and spatial persistence, persistence corrected for baseflow and streamflow, as well as river distance weighted runoff obtained from space-time distributed rainfall. In the development of the benchmarks, we use basic hydrologic insights such as flow aggregation by the river network, scale-dependence in basin response, streamflow partitioning into quick flow and baseflow, water travel time, and rainfall averaging by the basin width function. The study uses 140 streamflow gauges in Iowa that cover a range of basin scales between 7 and 37,000 km2. The data cover 17 years. This work demonstrates that the proposed benchmarks can provide good performance according to several commonly used metrics. For example, streamflow forecasting at half of the test locations across years achieves a Kling-Gupta Efficiency (KGE) score of 0.6 or higher at one-day ahead lead time, and 20% of cases reach the KGE of 0.8 or higher. The proposed benchmarks are easy to implement and should prove useful for developers of data-based as well as physics-based hydrologic models and real-time data assimilation techniques.