Shihong Li, Yang He, Jian Li, Jun Sheng, Shiwei Long, Zhiqiang Li, Bo Jiang, H. Fu, J. Weng, Juan Wu, Wei Zheng
{"title":"Titanium scaffold loaded with strontium and copper double-doped hydroxyapatite can inhibit bacterial growth and enhance osteogenesis","authors":"Shihong Li, Yang He, Jian Li, Jun Sheng, Shiwei Long, Zhiqiang Li, Bo Jiang, H. Fu, J. Weng, Juan Wu, Wei Zheng","doi":"10.1177/08853282221080525","DOIUrl":null,"url":null,"abstract":"Co-doping of multiple ions can effectively adjust the biological properties of hydroxyapatite (HA) for various biomedical applications. In this study, we prepared Sr2+ and Cu2+ double-doped hollow HA and characterized them by SEM, EDS, XRD, FTIR, and other methods. We found that Sr2+ and Cu2+ were uniformly distributed in the hollow carbonic acid HA microspheres. As the proportion of metal elements increases, the microspherical appearance and crystallinity properties also change. In addition, we also prepared porous titanium scaffolds through 3D printing technology and constructed composite scaffolds of porous titanium scaffolds, Sr2+ and Cu2+ double-doped HA, and gelatin. In vitro cell experiments and bacterial experiments, the composite scaffolds, especially the 10%Cu-10%Sr- HA/Gel/Ti group scaffolds, have good biocompatibility and integration with bone tissues, promoting the proliferation and differentiation of BMSCs while having excellent antibacterial properties. These composite scaffolds can simultaneously achieve bone defect filling, osteoblast differentiation, and antibacterial functions, owning broad clinical application prospects.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282221080525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Co-doping of multiple ions can effectively adjust the biological properties of hydroxyapatite (HA) for various biomedical applications. In this study, we prepared Sr2+ and Cu2+ double-doped hollow HA and characterized them by SEM, EDS, XRD, FTIR, and other methods. We found that Sr2+ and Cu2+ were uniformly distributed in the hollow carbonic acid HA microspheres. As the proportion of metal elements increases, the microspherical appearance and crystallinity properties also change. In addition, we also prepared porous titanium scaffolds through 3D printing technology and constructed composite scaffolds of porous titanium scaffolds, Sr2+ and Cu2+ double-doped HA, and gelatin. In vitro cell experiments and bacterial experiments, the composite scaffolds, especially the 10%Cu-10%Sr- HA/Gel/Ti group scaffolds, have good biocompatibility and integration with bone tissues, promoting the proliferation and differentiation of BMSCs while having excellent antibacterial properties. These composite scaffolds can simultaneously achieve bone defect filling, osteoblast differentiation, and antibacterial functions, owning broad clinical application prospects.