Kousik Maiti, Suchandan Kayal, Aditi Kar Gangopadhyay
{"title":"On Progressively Censored Generalized X-Exponential Distribution: (Non) Bayesian Estimation with an Application to Bladder Cancer Data","authors":"Kousik Maiti, Suchandan Kayal, Aditi Kar Gangopadhyay","doi":"10.1007/s40745-023-00477-1","DOIUrl":null,"url":null,"abstract":"<div><p>This article addresses estimation of the parameters and reliability characteristics of a generalized <i>X</i>-Exponential distribution based on the progressive type-II censored sample. The maximum likelihood estimates (MLEs) are obtained. The uniqueness and existence of the MLEs are studied. The Bayes estimates are obtained under squared error and entropy loss functions. For computation of the Bayes estimates, Markov Chain Monte Carlo method is used. Bootstrap-<i>t</i> and bootstrap-<i>p</i> methods are used to compute the interval estimates. Further, a simulation study is performed to compare the performance of the proposed estimates. Finally, a real-life dataset is considered and analysed for illustrative purposes.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00477-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This article addresses estimation of the parameters and reliability characteristics of a generalized X-Exponential distribution based on the progressive type-II censored sample. The maximum likelihood estimates (MLEs) are obtained. The uniqueness and existence of the MLEs are studied. The Bayes estimates are obtained under squared error and entropy loss functions. For computation of the Bayes estimates, Markov Chain Monte Carlo method is used. Bootstrap-t and bootstrap-p methods are used to compute the interval estimates. Further, a simulation study is performed to compare the performance of the proposed estimates. Finally, a real-life dataset is considered and analysed for illustrative purposes.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.