{"title":"Modified optimal series cascade control for non-minimum phase system","authors":"Manish Yadav, H. Patel","doi":"10.1515/cppm-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract This article contributes to handling the Non-Minimum Phase (NMP) system with time delay in the existence of uncertainty and disturbances. The series cascade control scheme is used to overcome such problems. The secondary loop architecture in a series cascade scheme is formulated in the Internal Model Control (IMC) framework. The tuning of fractional-filter via a delayed version of Bodes’ ideal transfer function approach of primary loop controller in a series cascade arrangement shows the novelty of this work. The primary loop controller is designed in the IMC framework after accountability of inverse response and dead-time compensator. Furthermore, Particle Swarm Optimization (PSO) is adapted to accomplish the optimal value of controller settings. The Riemann sheet principle is used to determine stability. The sensitivity investigation is performed to know the robustness of the offered controller. For the effectiveness of the suggested scheme, two case studies are revealed in this paper.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article contributes to handling the Non-Minimum Phase (NMP) system with time delay in the existence of uncertainty and disturbances. The series cascade control scheme is used to overcome such problems. The secondary loop architecture in a series cascade scheme is formulated in the Internal Model Control (IMC) framework. The tuning of fractional-filter via a delayed version of Bodes’ ideal transfer function approach of primary loop controller in a series cascade arrangement shows the novelty of this work. The primary loop controller is designed in the IMC framework after accountability of inverse response and dead-time compensator. Furthermore, Particle Swarm Optimization (PSO) is adapted to accomplish the optimal value of controller settings. The Riemann sheet principle is used to determine stability. The sensitivity investigation is performed to know the robustness of the offered controller. For the effectiveness of the suggested scheme, two case studies are revealed in this paper.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.