Taiga Kurisawa, Yoshiki Kamiura, C. Fujikawa, O. Mikami
{"title":"Polymer tapered pillar on a fiber end fabricated by UV irradiation using a high-NA fiber","authors":"Taiga Kurisawa, Yoshiki Kamiura, C. Fujikawa, O. Mikami","doi":"10.4302/plp.v14i4.1179","DOIUrl":null,"url":null,"abstract":"The increasing need for single-mode fibers (SMFs) and advances in silicon photonics (SiPh) devices have led to the need for an efficient method of optical coupling between them. To achieve a higher coupling between them, a polymer tapered pillar was fabricated on the end face of the SMF by applying the optical diffraction effect and a self-written waveguide technology using a high numerical aperture (HiNA) fiber. The initial 10.4 µm spot size was reduced to 4.17 µm at 1.55 µm wavelength, and the greatest coupling efficiency of –1.01 dB was reached between an SMF with a tapered pillar and uncured resin cladding and a HiNA fiber. Full Text: PDF ReferencesR. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni, \"Coupling strategies for silicon photonics integrated chips [Invited]\", Photonics Res. 7, 201 (2019). CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, \"Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization\", Appl. Opt. 40, 5860 (2001). CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska, \"Polymer Microtips at Different Types of Optical Fibers as Functional Elements for Sensing Applications\", J. Lightwave Techn. 33, 2398 (2015). CrossRef O. Mikami, R. Sato, S. Suzuki, C. Fujikawa, \"Polymer Microlens on Pillar Grown From Single-Mode Fiber Core for Silicon Photonics\", IEEE Photonics. Technol. Lett. 32, 399 (2020). CrossRef Y. Kamiura, T. Kurisawa, C. Fujikawa, O. Mikami, \"High optical coupling efficiency of polymer microlens and pillar on single mode fiber for silicon photonics\", Jpn. J. Appl. Phys. 61, SK1009 (2022). CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud, \"Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection\", J. Lightwave Tech. 36, 2478 (2018). CrossRef H. Terasawa, O. Sugihara, \"Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling\", J. Lightwave Technol. 39, 7472 (2021). CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. Watté, J. Van Erps, \"Mode-field Matching Down-Tapers on Single-Mode Optical Fibers for Edge Coupling Towards Generic Photonic Integrated Circuit Platforms\", J. Lightwave Tech. 38, 4834 (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato, \"Tapered Self-Written Waveguide between Silicon Photonics Chip and Standard Single-Mode Fiber\", Opt. Fiber Communication Conference (OFC2020), paper W1A.2, (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, N. Sato, \"Tapered self-written waveguide for a silicon photonic chip I/O\", Opt. Lett. 47(12), 2971 (2022). CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran, \"Tapered Spot Size Converter by Mask-Transfer Self-Written Technology for Optical Interconnection\", Photon. Technol. Lett. 29, 949 (2017). CrossRef H. Nawata, K. Ohmori, Proc. International Conference on Electronics Packaging (ICEP), paper 23 (2014) DirectLink S. J. Frisken, \"Light-induced optical waveguide uptapers\", Opt. Lett. 18, 1035 (1993). CrossRef Y. Obata, Y. Oyama, H. Ozawa, T. Ito, O. Mikami, T. Uchida, \"Multi-array Self-written Waveguides using Photo-mask for Optical Surface Mount Technology\", International Conference on Electronics Packaging (ICEP), paper 225 (2005). DirectLink P. Yin, J.R. Serafini, Z. Su, R. Shiue, E. Timurdogan, M.L. Fanto, S. Preble, \"Low connector-to-connector loss through silicon photonic chips using ultra-low loss splicing of SMF-28 to high numerical aperture fibers\", Opt. Expr. 27, 24188 (2019). CrossRef https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US, (18/09/2022). DirectLink","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i4.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing need for single-mode fibers (SMFs) and advances in silicon photonics (SiPh) devices have led to the need for an efficient method of optical coupling between them. To achieve a higher coupling between them, a polymer tapered pillar was fabricated on the end face of the SMF by applying the optical diffraction effect and a self-written waveguide technology using a high numerical aperture (HiNA) fiber. The initial 10.4 µm spot size was reduced to 4.17 µm at 1.55 µm wavelength, and the greatest coupling efficiency of –1.01 dB was reached between an SMF with a tapered pillar and uncured resin cladding and a HiNA fiber. Full Text: PDF ReferencesR. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni, "Coupling strategies for silicon photonics integrated chips [Invited]", Photonics Res. 7, 201 (2019). CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization", Appl. Opt. 40, 5860 (2001). CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska, "Polymer Microtips at Different Types of Optical Fibers as Functional Elements for Sensing Applications", J. Lightwave Techn. 33, 2398 (2015). CrossRef O. Mikami, R. Sato, S. Suzuki, C. Fujikawa, "Polymer Microlens on Pillar Grown From Single-Mode Fiber Core for Silicon Photonics", IEEE Photonics. Technol. Lett. 32, 399 (2020). CrossRef Y. Kamiura, T. Kurisawa, C. Fujikawa, O. Mikami, "High optical coupling efficiency of polymer microlens and pillar on single mode fiber for silicon photonics", Jpn. J. Appl. Phys. 61, SK1009 (2022). CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud, "Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection", J. Lightwave Tech. 36, 2478 (2018). CrossRef H. Terasawa, O. Sugihara, "Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling", J. Lightwave Technol. 39, 7472 (2021). CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. Watté, J. Van Erps, "Mode-field Matching Down-Tapers on Single-Mode Optical Fibers for Edge Coupling Towards Generic Photonic Integrated Circuit Platforms", J. Lightwave Tech. 38, 4834 (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato, "Tapered Self-Written Waveguide between Silicon Photonics Chip and Standard Single-Mode Fiber", Opt. Fiber Communication Conference (OFC2020), paper W1A.2, (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, N. Sato, "Tapered self-written waveguide for a silicon photonic chip I/O", Opt. Lett. 47(12), 2971 (2022). CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran, "Tapered Spot Size Converter by Mask-Transfer Self-Written Technology for Optical Interconnection", Photon. Technol. Lett. 29, 949 (2017). CrossRef H. Nawata, K. Ohmori, Proc. International Conference on Electronics Packaging (ICEP), paper 23 (2014) DirectLink S. J. Frisken, "Light-induced optical waveguide uptapers", Opt. Lett. 18, 1035 (1993). CrossRef Y. Obata, Y. Oyama, H. Ozawa, T. Ito, O. Mikami, T. Uchida, "Multi-array Self-written Waveguides using Photo-mask for Optical Surface Mount Technology", International Conference on Electronics Packaging (ICEP), paper 225 (2005). DirectLink P. Yin, J.R. Serafini, Z. Su, R. Shiue, E. Timurdogan, M.L. Fanto, S. Preble, "Low connector-to-connector loss through silicon photonic chips using ultra-low loss splicing of SMF-28 to high numerical aperture fibers", Opt. Expr. 27, 24188 (2019). CrossRef https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US, (18/09/2022). DirectLink
对单模光纤(smf)的需求日益增加,硅光子学(SiPh)器件的进步导致需要一种有效的方法来实现它们之间的光耦合。为了实现两者之间的高耦合,利用光学衍射效应和高数值孔径光纤自写入波导技术,在SMF的端面制备了聚合物锥形柱。在1.55µm波长处,光斑尺寸从10.4µm减小到4.17µm,具有锥形柱和未固化树脂包层的SMF与HiNA光纤之间的耦合效率最高,为-1.01 dB。全文:PDF。Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni,“硅光子学集成芯片的耦合策略[邀请]”,photonics Res. 7,201(2019)。CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.- j。Lougnot,“基于自由基光聚合的微米级聚合物元件在光纤末端的集成”,applied。选择40,5860(2001)。CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska,“聚合物微针尖在不同类型光纤传感中的应用”,光波技术,33,2398(2015)。交叉参考O. Mikami, R. Sato, S. Suzuki, C. Fujikawa,“基于单模光纤芯柱的聚合物微透镜”,IEEE Photonics。抛光工艺。《科学通报》,2016年第3期。引用本文:神村,田泽,藤川,三上,“硅光子学单模光纤中聚合物微透镜和光柱的高耦合效率”,日本,j:。物理学报,2003,26(2):444 - 444。CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud,“双光子吸收光诱导自写波导的单模光互连”,J.光波技术,36(2018)。陈晓明,“近红外自写光波导在光纤芯片自耦合中的应用”,光波学报,39(1)(2013)。CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. watt, J. Van Erps,“面向通用光子集成电路平台的单模光纤边缘耦合的模场匹配下锥”,光波学报,38,34(2020)。交叉参考:齐藤,石山,T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato,“硅光子学芯片与标准单模光纤之间的锥形自写波导”,光纤通信会议(OFC2020),论文W1A。2,(2020)。引用本文:齐藤,石山,土泽,N. Sato,“硅光子芯片I/O的锥形自写波导”,光学学报,47(12),2971(2022)。CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran,“基于掩模转移自写技术的光斑尺寸变换器”,光子学报。抛光工艺。杂志29,949(2017)。CrossRef H. Nawata, K. Ohmori, Proc. International Conference on Electronics封装(ICEP), paper 23 (2014)CrossRef . Obata, Y. Oyama, H. Ozawa, T. Ito, O. Mikami, T. Uchida,“多阵列自写波导的光表面贴装技术”,国际电子封装会议(ICEP),论文225(2005)。尹鹏,苏志强,刘志强,刘志强,刘志强,刘志强,刘志强,“高数值孔径光纤的低损耗拼接技术”,光子学报,27,24(2019)。CrossRef https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US,(18/09/2022)。DirectLink