Inference for the Difference of Two Independent KS Sharpe Ratios under Lognormal Returns

IF 1 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2020-10-10 DOI:10.1155/2020/6751574
J. Qi, M. Rekkas, A. Wong
{"title":"Inference for the Difference of Two Independent KS Sharpe Ratios under Lognormal Returns","authors":"J. Qi, M. Rekkas, A. Wong","doi":"10.1155/2020/6751574","DOIUrl":null,"url":null,"abstract":"<jats:p>A higher-order likelihood-based asymptotic method to obtain inference for the difference between two KS Sharpe ratios when gross returns of an investment are assumed to be lognormally distributed is proposed. Theoretically, our proposed method has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>O</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mrow>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> distributional accuracy, whereas conventional methods for inference have <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>O</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> distributional accuracy. Using an example, we show how discordant confidence interval results can be depending on the methodology used. We are able to demonstrate the accuracy of our proposed method through simulation studies.</jats:p>","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/6751574","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/6751574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A higher-order likelihood-based asymptotic method to obtain inference for the difference between two KS Sharpe ratios when gross returns of an investment are assumed to be lognormally distributed is proposed. Theoretically, our proposed method has O n 3 / 2 distributional accuracy, whereas conventional methods for inference have O n 1 / 2 distributional accuracy. Using an example, we show how discordant confidence interval results can be depending on the methodology used. We are able to demonstrate the accuracy of our proposed method through simulation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对数正态收益下两个独立KS Sharpe比率差的推断
提出了一种基于高阶似然的渐近方法,用于推断当投资总收益假定为对数正态分布时两个KS-Sharpe比率之间的差异。从理论上讲,我们提出的方法−3/2分布精度,而传统的推理方法有−1/2分布精确通过一个例子,我们展示了置信区间结果的不一致性,这取决于所使用的方法。我们能够通过仿真研究证明我们提出的方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1