Yang Yong, Fu Yaoming, Lin Binbin, Hou Kuanxin, Kong Ling Bing, X. Honghui, Gao Jie, Jiang Shiqi
{"title":"Accurate measurement and evaluation method of axial compressor efficiency under the influence of multiple factors","authors":"Yang Yong, Fu Yaoming, Lin Binbin, Hou Kuanxin, Kong Ling Bing, X. Honghui, Gao Jie, Jiang Shiqi","doi":"10.1515/tjj-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the effectiveness of compressor efficiency measurement results under the influence of complex factors, several research work have been carried out, such as inverse connection of thermocouple suitable for efficiency measurement under low pressure ratio and small temperature rise conditions, torque efficiency correction considering the mechanical loss of high speed gearbox under various working conditions, and identification of the impact of seal cavity leakage flow on efficiency measurement. Compared with the conventional connection method of thermocouple, the inverse connection method of thermocouple shows obvious advantages in efficiency measurement under low pressure ratio and small temperature rise conditions. At medium and low speeds, the conventional simplified correction method will lead to the high measurement results of torque efficiency after installing the high speed gearbox. The accuracy of torque efficiency measurement can be improved by adopting the improved correction method. Increasing the oil supply pressure of the high speed gearbox or reducing the oil supply temperature will increase the mechanical loss of the high speed gearbox. The air flow in the compressor bearing seal chamber will leak into the flow passage through the labyrinth clearance, resulting in discontinuous changes of the inlet/outlet flow of compressor.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to improve the effectiveness of compressor efficiency measurement results under the influence of complex factors, several research work have been carried out, such as inverse connection of thermocouple suitable for efficiency measurement under low pressure ratio and small temperature rise conditions, torque efficiency correction considering the mechanical loss of high speed gearbox under various working conditions, and identification of the impact of seal cavity leakage flow on efficiency measurement. Compared with the conventional connection method of thermocouple, the inverse connection method of thermocouple shows obvious advantages in efficiency measurement under low pressure ratio and small temperature rise conditions. At medium and low speeds, the conventional simplified correction method will lead to the high measurement results of torque efficiency after installing the high speed gearbox. The accuracy of torque efficiency measurement can be improved by adopting the improved correction method. Increasing the oil supply pressure of the high speed gearbox or reducing the oil supply temperature will increase the mechanical loss of the high speed gearbox. The air flow in the compressor bearing seal chamber will leak into the flow passage through the labyrinth clearance, resulting in discontinuous changes of the inlet/outlet flow of compressor.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.