Gel Textural Characteristics of Hair Gel with Cocoa Shell Extract by Using Mixture D-optimal Method

Q4 Biochemistry, Genetics and Molecular Biology International Journal of Biology and Biomedical Engineering Pub Date : 2022-01-10 DOI:10.46300/91011.2022.16.14
Arief Huzaimi Md Yusof, Siti Salwa Abd Gani, Uswatun Hasanah Zaidan, M. Halmi
{"title":"Gel Textural Characteristics of Hair Gel with Cocoa Shell Extract by Using Mixture D-optimal Method","authors":"Arief Huzaimi Md Yusof, Siti Salwa Abd Gani, Uswatun Hasanah Zaidan, M. Halmi","doi":"10.46300/91011.2022.16.14","DOIUrl":null,"url":null,"abstract":"This study was used a mixture design to optimize the spreadability and viscosity of topical hair gel incorporates cocoa shell extract. The factor of the hair gel ingredient was thickener (0.2 – 0.8%), styling polymer A (2-5%), styling polymer B (2-6%), and solvent (84.63-91.63%) were studied on two responses selected spreadability and viscosity. The data collected were fitted to the model with high coefficient determination (R2= 0.994 for the spreadability and 0.9937 for the viscosity). The model can be predicted by showing the good lack of fit test result not significant with the p-value bigger than 0.05. From the ramp function simulation, the optimized formulation was selected and established at thickener (0.55%), styling polymer A (3.61%), styling polymer B (3.72%), and solvent (88.55%) with the spreadability and viscosity at 353.77 g.s and 39.91 pa.s respectively. The benefit of using mixture design in this experiment, it can help a formulator to understand the complex interaction between factors and can easily modify the formulation through ramp function simulation to obtain the desired result. The predicted validation test shows that both values were comparable. Under this condition showed that the model development could be used to predict future observations within the design range thickener (0.2 – 0.8%), styling polymer A (2-5%), styling polymer B (2-6%), and solvent (84.63-91.63%).","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2022.16.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

This study was used a mixture design to optimize the spreadability and viscosity of topical hair gel incorporates cocoa shell extract. The factor of the hair gel ingredient was thickener (0.2 – 0.8%), styling polymer A (2-5%), styling polymer B (2-6%), and solvent (84.63-91.63%) were studied on two responses selected spreadability and viscosity. The data collected were fitted to the model with high coefficient determination (R2= 0.994 for the spreadability and 0.9937 for the viscosity). The model can be predicted by showing the good lack of fit test result not significant with the p-value bigger than 0.05. From the ramp function simulation, the optimized formulation was selected and established at thickener (0.55%), styling polymer A (3.61%), styling polymer B (3.72%), and solvent (88.55%) with the spreadability and viscosity at 353.77 g.s and 39.91 pa.s respectively. The benefit of using mixture design in this experiment, it can help a formulator to understand the complex interaction between factors and can easily modify the formulation through ramp function simulation to obtain the desired result. The predicted validation test shows that both values were comparable. Under this condition showed that the model development could be used to predict future observations within the design range thickener (0.2 – 0.8%), styling polymer A (2-5%), styling polymer B (2-6%), and solvent (84.63-91.63%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合d -最优法测定可可壳提取液发胶的凝胶结构特征
本研究采用混合物设计来优化含有可可壳提取物的局部发胶的铺展性和粘度。头发凝胶成分的因素是增稠剂(0.2-0.8%)、定型聚合物A(2-5%)、定型聚合物B(2-6%)和溶剂(84.63-91.63%)。所收集的数据与具有高系数测定的模型拟合(铺展性R2=0.994,粘度R2=0.9937)。该模型可以通过显示良好的不匹配测试结果来预测,p值大于0.05时不显著。从斜坡函数模拟中,选择并确定了增稠剂(0.55%)、定型聚合物A(3.61%)、定型聚合物B(3.72%)和溶剂(88.55%)的最佳配方,其铺展性和粘度分别为353.77g.s和39.91pa.s。在本实验中使用混合物设计的好处是,它可以帮助公式制定者了解因素之间的复杂相互作用,并可以通过斜坡函数模拟轻松地修改公式,以获得所需的结果。预测验证测试表明,这两个值具有可比性。在此条件下,模型开发可用于预测未来在增稠剂(0.2–0.8%)、定型聚合物A(2-5%)、定型聚合物B(2-6%)和溶剂(84.63–91.63%)设计范围内的观测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biology and Biomedical Engineering
International Journal of Biology and Biomedical Engineering Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
42
期刊介绍: Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.
期刊最新文献
Health Communication, Knowledge and Practice towards Prostate cancer in Kwara State, Nigeria Effect of Oil and Selenium as Feed Supplement on Nutritional Content, Fatty Acid Profile, Cholesterol and Protein Productive Value in Nile Tilapia Meat Brain Tumor Classification Using Deep CNN-Based Transfer Learning Approach Early Detection of Crop Disease With Automatic Image Based Classification Using CNN and Trans-fer Learning Analysis of Bioactive Content of White Turmeric Rhizome (Kaempferia rotunda) Growing In Central Kalimantan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1