{"title":"High sensitivity and low detection limit sensor based on a slotted nanobeam cavity","authors":"M. Al-Hmoud, Rasha Alyahyan","doi":"10.4302/plp.v14i3.1161","DOIUrl":null,"url":null,"abstract":"In this work, the three-dimensional finite-difference time-domain (3D-FDTD) method is used to design and analyze a refractive index sensor based on a slotted photonic crystal nanobeam cavity. These type of cavities support a high quality-factor and a small volume, and therefore is attractive for optical sensing. We demonstrate that when immersing our proposed sensor in water it can possess a high-quality factor of 2.0×10^6, high sensitivity of 325 nm/RIU, and a detection limit of 2.4×10^(-7) RIU. We believe that our proposed sensor is a promising candidate for potential applications sensing like in optofluidic- and bio-sensing. Full Text: PDF ReferencesE. Chow, A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami, \"Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity\", OSA Trends Opt. Photonics Ser. 97 909 (2004). CrossRef S. Kim, H-M. Kim, Y-H. Lee, \"Single nanobeam optical sensor with a high Q-factor and high sensitivity\", Opt. Lett. 40 5351 (2015). CrossRef D-Q, Yang, B Duan, X, Liu, A-Q, Wang, X-G, Li, Y-F, Ji, \"Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review\", Micromachines 11 (2020). CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, \"High quality factor photonic crystal nanobeam cavities\", Appl. Phys. Lett. 94 121106 (2009). CrossRef P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle, \"Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio\", Opt. Express 21 32468 (2013). CrossRef H. Choi, M. Heuck, D. Englund, \"Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities\", Phys. Rev. Lett. 118 223605 (2017). CrossRef M. Al-Hmoud, S. Bougouffa, \"Simultaneous high Q/V-ratio and optimized far-field emission pattern in diamond slot-bridge nanobeam cavity\", Results Phys. 26 104314 (2021). CrossRef Q. Quan (2014). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, A. Kaźmierczak, R. Piramidowicz, M. Guzik, A. Bachmatiuk, \"Development of a low-cost silica-titania optical platform for integrated photonics applications\", Opt. Express 30 23678 (2022). CrossRef D-Q. Yang, B. Duan, X. Liu, A-Q. Wang, X-G. Li, Y-F. Ji, \"\"Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review\", Micromachines 72, 11 (2020). CrossRef Y.N. Zhang, Y. Zhao, R.Q Lv, \"A review for optical sensors based on photonic crystal cavities\", Sens. Actuators A: Phys. 233 374 (2015). CrossRef P. Lalanne, S. Mias, and J.P. Hugonin, \"Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities\", Opt. Express 12 458 (2004). CrossRef C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin, \"Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities\", Opt. Express 13 245 (2005). CrossRef J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, \"Ultrasmall Mode Volumes in Dielectric Optical Microcavities\", Phys. Rev. Lett. 95 143901 (2005). CrossRef S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady, \"Designing low power and high contrast ratio all-optical NOT logic gate for using in optical integrated circuits\", Opt. Quantum Electron. 51 1 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i3.1161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the three-dimensional finite-difference time-domain (3D-FDTD) method is used to design and analyze a refractive index sensor based on a slotted photonic crystal nanobeam cavity. These type of cavities support a high quality-factor and a small volume, and therefore is attractive for optical sensing. We demonstrate that when immersing our proposed sensor in water it can possess a high-quality factor of 2.0×10^6, high sensitivity of 325 nm/RIU, and a detection limit of 2.4×10^(-7) RIU. We believe that our proposed sensor is a promising candidate for potential applications sensing like in optofluidic- and bio-sensing. Full Text: PDF ReferencesE. Chow, A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity", OSA Trends Opt. Photonics Ser. 97 909 (2004). CrossRef S. Kim, H-M. Kim, Y-H. Lee, "Single nanobeam optical sensor with a high Q-factor and high sensitivity", Opt. Lett. 40 5351 (2015). CrossRef D-Q, Yang, B Duan, X, Liu, A-Q, Wang, X-G, Li, Y-F, Ji, "Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review", Micromachines 11 (2020). CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, "High quality factor photonic crystal nanobeam cavities", Appl. Phys. Lett. 94 121106 (2009). CrossRef P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle, "Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio", Opt. Express 21 32468 (2013). CrossRef H. Choi, M. Heuck, D. Englund, "Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities", Phys. Rev. Lett. 118 223605 (2017). CrossRef M. Al-Hmoud, S. Bougouffa, "Simultaneous high Q/V-ratio and optimized far-field emission pattern in diamond slot-bridge nanobeam cavity", Results Phys. 26 104314 (2021). CrossRef Q. Quan (2014). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, A. Kaźmierczak, R. Piramidowicz, M. Guzik, A. Bachmatiuk, "Development of a low-cost silica-titania optical platform for integrated photonics applications", Opt. Express 30 23678 (2022). CrossRef D-Q. Yang, B. Duan, X. Liu, A-Q. Wang, X-G. Li, Y-F. Ji, ""Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review", Micromachines 72, 11 (2020). CrossRef Y.N. Zhang, Y. Zhao, R.Q Lv, "A review for optical sensors based on photonic crystal cavities", Sens. Actuators A: Phys. 233 374 (2015). CrossRef P. Lalanne, S. Mias, and J.P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities", Opt. Express 12 458 (2004). CrossRef C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities", Opt. Express 13 245 (2005). CrossRef J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities", Phys. Rev. Lett. 95 143901 (2005). CrossRef S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady, "Designing low power and high contrast ratio all-optical NOT logic gate for using in optical integrated circuits", Opt. Quantum Electron. 51 1 (2019). CrossRef
本文采用三维时域有限差分(3D-FDTD)方法设计并分析了基于狭缝光子晶体纳米束腔的折射率传感器。这种类型的空腔支持高质量因子和小体积,因此对光学传感具有吸引力。我们证明,当将我们提出的传感器浸入水中时,它可以具有2.0×10^6的高质量因子,325 nm/RIU的高灵敏度和2.4×10^(-7) RIU的检测限。我们相信我们提出的传感器是一个很有前途的潜在应用,如光流体和生物传感。全文:PDF参考文献。周,A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami,“基于二维光子晶体微腔的超紧凑生物化学传感器”,光子学报,97(2004)。CrossRef S. Kim, h . m .;金,Y-H。李,“具有高q因子和高灵敏度的单纳米光束光学传感器”,光学学报,40 5351(2015)。cross - ref,杨德强,段斌,刘晓东,王爱强,李晓刚,季云峰,“纳米尺度光传感的光子晶体纳米光束腔研究进展”,微机械11(2020)。CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. lonar,“高质量因子光子晶体纳米束腔”,applied。理论物理。杂志。94 121106(2009)。交叉ref P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle,“超高质量因子模体积比的开槽光子晶体纳米束腔”,光子学报21(2013)。CrossRef H. Choi, M. Heuck, D. Englund,“单光子非线性的自相似纳米腔设计”,物理学报。Rev. Lett. 118 223605(2017)。CrossRef M. al - houd, S. Bougouffa,“高Q/ v比的金刚石槽桥纳米波束腔远场发射模式优化”,物理学报,26(10):1414(2021)。CrossRef Quan Q.(2014)。CrossRef M. a . Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, a . Kaźmierczak, R. Piramidowicz, M. Guzik, a . Bachmatiuk,“集成光子学应用的低成本二氧化硅-二氧化钛光学平台的开发”,光子学报,30(2):23678(2022)。CrossRef dq。杨斌,段斌,刘晓霞,阿强。王,X-G。李,yf。“基于光子晶体的纳米光传感技术研究进展”,《光子学报》,第7期,第11期(2020)。CrossRef Y.N.张、赵y R.Q Lv,“回顾基于光子晶体的光学传感器腔”,参议员驱动器A:理论物理233 374(2015)。王晓明,王晓明,“提高光子晶体微腔质量因子与腔体体积比的两种物理机制”,光子学报,12(2004)。[CrossRef] C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin,“光子晶体微腔几何调谐的模态反射率增强”,光子学报,13(2005)。J.T. Robinson, C. Manolatou, L. Chen, M. Lipson,“介质光学微腔的超小模体积”,物理学报。Rev. Lett. 95 143901(2005)。CrossRef S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady,“用于光学集成电路的低功耗和高对比度全光非逻辑门设计”,量子电子学报,51(2019)。CrossRef