Exploring the Impact of Geometry and Fibre Arrangements on Daylight Control in Bistable Kinetic Shades

Elena Vazquez, J. Duarte
{"title":"Exploring the Impact of Geometry and Fibre Arrangements on Daylight Control in Bistable Kinetic Shades","authors":"Elena Vazquez, J. Duarte","doi":"10.47982/jfde.2022.1.03","DOIUrl":null,"url":null,"abstract":"Bistable laminates are composite structures that exhibit more than one static configuration, showing a \"snap-through\" behaviour that results from residual stresses generated during the curing process. This study focuses on finding adequate fibre and laminate arrangements for bistable laminates used in functional kinetic shadings. We present a study with a mixed-methods approach, combining experimental prototyping and performance simulation studies. We fabricated and analysed the geometry of a series of prototypes, conducting daylight studies to assess the performance of different laminates and fibre arrangements and showing how specific fibre arrangements can help control daylight throughout the day. We concluded that controlling fibre arrangements of bistable laminates could increase the functionality of bistable kinetic shadings in terms of daylight control, leading to more differentiated shapes between their two stable states, which corresponds to the open and closed positions of the shadings. Increasing such a difference increases the range of system configurations and, therefore, the ability to respond to various external lighting conditions and internal user requirements.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2022.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Bistable laminates are composite structures that exhibit more than one static configuration, showing a "snap-through" behaviour that results from residual stresses generated during the curing process. This study focuses on finding adequate fibre and laminate arrangements for bistable laminates used in functional kinetic shadings. We present a study with a mixed-methods approach, combining experimental prototyping and performance simulation studies. We fabricated and analysed the geometry of a series of prototypes, conducting daylight studies to assess the performance of different laminates and fibre arrangements and showing how specific fibre arrangements can help control daylight throughout the day. We concluded that controlling fibre arrangements of bistable laminates could increase the functionality of bistable kinetic shadings in terms of daylight control, leading to more differentiated shapes between their two stable states, which corresponds to the open and closed positions of the shadings. Increasing such a difference increases the range of system configurations and, therefore, the ability to respond to various external lighting conditions and internal user requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索几何结构和纤维排列对双稳态动态遮阳板日光控制的影响
双稳态层压板是一种复合材料结构,表现出一种以上的静态配置,表现出由固化过程中产生的残余应力引起的“穿透”行为。本研究的重点是为用于功能动力学阴影的双稳态层压板寻找合适的纤维和层压板排列。我们提出了一种混合方法的研究方法,结合了实验原型和性能模拟研究。我们制作并分析了一系列原型的几何形状,进行了日光研究,以评估不同层压板和纤维排列的性能,并展示了特定的纤维排列如何帮助控制全天的日光。我们得出的结论是,控制双稳态层压板的纤维排列可以增加双稳态动力学遮光板在日光控制方面的功能,导致其两种稳定状态之间的形状更加不同,这对应于遮光板的打开和关闭位置。增加这样的差异增加了系统配置的范围,因此增加了对各种外部照明条件和内部用户要求作出响应的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Facade Design and Engineering
Journal of Facade Design and Engineering Engineering-Architecture
CiteScore
1.90
自引率
0.00%
发文量
3
审稿时长
12 weeks
期刊介绍: The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.
期刊最新文献
Data-driven and LCA-based Framework for environmental and circular assessment of Modular Curtain Walls Energy retrofit with prefabricated timber-based façade modules: pre- and post-comparison between two identical buildings Definition and design of a prefabricated and modular façade system to incorporate solar harvesting technologies Energy-saving potential of thermochromic coatings in transparent building envelope components Off-site prefabricated hybrid façade systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1