Comparative evaluation for detection of brain tumor using machine learning algorithms

S. Kareem, B. Abdulrahman, R. Hawezi, F. Khoshaba, Shavan K. Askar, K. Muheden, Ibrahim Shamal Abdulkhaleq
{"title":"Comparative evaluation for detection of brain tumor using machine learning algorithms","authors":"S. Kareem, B. Abdulrahman, R. Hawezi, F. Khoshaba, Shavan K. Askar, K. Muheden, Ibrahim Shamal Abdulkhaleq","doi":"10.11591/ijai.v12.i1.pp469-477","DOIUrl":null,"url":null,"abstract":"Automated flaw identification has become more important in medical imaging. For patient preparation, unaided prediction of tumor (brain) detection in the magnetic resonance imaging process (MRI) is critical. Traditional ways of recognizing z are intended to make radiologists' jobs easier. The size and variety of molecular structures in brain tumors is one of the issues with MRI brain tumor diagnosis. Deep learning (DL) techniques (artificial neural network (ANN), naive Bayes (NB), multi-layer perceptron (MLP)) are used in this article to detect brain cancers in MRI data. The preprocessing techniques are used to eliminate textural features from the brain MRI images. These characteristics are then utilized to train a machine-learning system.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp469-477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Automated flaw identification has become more important in medical imaging. For patient preparation, unaided prediction of tumor (brain) detection in the magnetic resonance imaging process (MRI) is critical. Traditional ways of recognizing z are intended to make radiologists' jobs easier. The size and variety of molecular structures in brain tumors is one of the issues with MRI brain tumor diagnosis. Deep learning (DL) techniques (artificial neural network (ANN), naive Bayes (NB), multi-layer perceptron (MLP)) are used in this article to detect brain cancers in MRI data. The preprocessing techniques are used to eliminate textural features from the brain MRI images. These characteristics are then utilized to train a machine-learning system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法在脑肿瘤检测中的比较评价
自动缺陷识别在医学成像中变得越来越重要。对于患者准备而言,在磁共振成像过程(MRI)中对肿瘤(大脑)检测的独立预测至关重要。识别z的传统方法旨在使放射科医生的工作更容易。脑肿瘤分子结构的大小和多样性是MRI诊断脑肿瘤的问题之一。本文使用深度学习(DL)技术(人工神经网络(ANN)、朴素贝叶斯(NB)、多层感知器(MLP))在MRI数据中检测脑癌。预处理技术用于从大脑MRI图像中消除纹理特征。然后利用这些特性来训练机器学习系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1