{"title":"Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs","authors":"F. S. Mousavi, M. Noori","doi":"10.22108/TOC.2017.20988","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, Cartesian product of two trees, hypercubes. We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$. Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"19-30"},"PeriodicalIF":0.6000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, Cartesian product of two trees, hypercubes. We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$. Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$.