Influence Of External Magnetic Field On Mechanical And Metallurgical Properties Of Pressure Vessel Steel (Sa 516 Grade 70) Welds Using Gas Tungsten Arc Welding
{"title":"Influence Of External Magnetic Field On Mechanical And Metallurgical Properties Of Pressure Vessel Steel (Sa 516 Grade 70) Welds Using Gas Tungsten Arc Welding","authors":"Paramjeet Shakya, Kulwant Singh, H. Arya","doi":"10.1115/1.4063096","DOIUrl":null,"url":null,"abstract":"\n The mechanical and metallurgical properties of weld play the most important role in the performance of welds which needs to be enhanced. The superimposing external magnetic field to the welding arc provided wonderful and favourable results for improving the shape and properties of weld. In this research, different configurations of specially designed electromagnets were used to investigate their effects on weld characteristics of SA 516 grade 70 welds. It is observed that 0-0-S-N configuration yielded maximum penetration (3.92 mm) compared with other configurations as well as the conventional gas tungsten arc welding (GTAW) process. Tensile test, Charpy impact test and microhardness were performed to investigate the mechanical properties and microstructure analysis was used to determine the metallurgical properties of the weld joints. The result shows that the tensile strength, impact strength, and microhardness of magnetically controlled GTAW (MCGTAW) weld was 620MPa, 275J and 198HV respectively which is 3.16%, 22.76%, and 1.51% higher than weld produced by GTAW process. It has also been observed that electromagnetic stirring refined the microstructure of the weld pool. The average grain size of MCGTAW weld was 31.035µm whereas 42.558µm average grain was obtained in conventional GTAW weld. The electromagnetic stirring enhanced the weld cooling rate resulting formation of more acicular ferrite which is desirable.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical and metallurgical properties of weld play the most important role in the performance of welds which needs to be enhanced. The superimposing external magnetic field to the welding arc provided wonderful and favourable results for improving the shape and properties of weld. In this research, different configurations of specially designed electromagnets were used to investigate their effects on weld characteristics of SA 516 grade 70 welds. It is observed that 0-0-S-N configuration yielded maximum penetration (3.92 mm) compared with other configurations as well as the conventional gas tungsten arc welding (GTAW) process. Tensile test, Charpy impact test and microhardness were performed to investigate the mechanical properties and microstructure analysis was used to determine the metallurgical properties of the weld joints. The result shows that the tensile strength, impact strength, and microhardness of magnetically controlled GTAW (MCGTAW) weld was 620MPa, 275J and 198HV respectively which is 3.16%, 22.76%, and 1.51% higher than weld produced by GTAW process. It has also been observed that electromagnetic stirring refined the microstructure of the weld pool. The average grain size of MCGTAW weld was 31.035µm whereas 42.558µm average grain was obtained in conventional GTAW weld. The electromagnetic stirring enhanced the weld cooling rate resulting formation of more acicular ferrite which is desirable.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.