{"title":"Basic Regularities of the Haline Stratification Long-Term Evolution in the Black Sea","authors":"A. Mizyuk, M. V. Senderov, G. Korotaev","doi":"10.22449/0233-7584-2019-6-646-661","DOIUrl":null,"url":null,"abstract":"Purpose. At present the process of formation of haline stratification in the Black Sea is poorly studied. The current state of the basin is considered to be close to equilibrium. However, having been analyzed, the long-term observations testify to a tendency towards desalination of the sea surface layer and salination of the deep waters. The goal of the study is to obtain a complete pattern of the haline stratification formation in the basin and the characteristic time scales of its long-term climatic evolution. Methods and Results. Numerical calculations of the Black Sea circulation which is formed being influenced by water exchange through the Bosporus, river runoff, precipitation and evaporation, are compared with the laboratory simulation results obtained previously using the NEMO model. It is shown that the time period of formation of the upper and lower Bosporus currents is of a characteristic time scale 20 years. Relatively short period of adaptation of the Bosporus water exchange to the external conditions testifies that on the climatic scale, the strait should be in a quasi-equilibrium state. The results of the numerical experiments also show that, against the background of the initially preset constant salinity of the Black Sea, the vertical haline stratification is formed rather rapidly due to the fact that the upper forty-meter layer is desalinated by the river runoffs. This leads to formation of a halocline in the 10–40 m layer. In the deeper layers, salinity increases slowly owing to the Marmora Sea water inflow. Each of the calculations shows that intense desalination of the surface layer lasts 70–80 years, whereupon its salinity grows slowly. Conclusions. As a result, the characteristic adaptation period of the basin stratification to the changes in the external factors constitutes 70–100 years. After the equilibrium regime is settled, slow quasi-stationary evolution of the basin fields takes place. Analysis of the obtained results enabled us to deduce the equations for describing slow evolution of the haline stratification.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/0233-7584-2019-6-646-661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. At present the process of formation of haline stratification in the Black Sea is poorly studied. The current state of the basin is considered to be close to equilibrium. However, having been analyzed, the long-term observations testify to a tendency towards desalination of the sea surface layer and salination of the deep waters. The goal of the study is to obtain a complete pattern of the haline stratification formation in the basin and the characteristic time scales of its long-term climatic evolution. Methods and Results. Numerical calculations of the Black Sea circulation which is formed being influenced by water exchange through the Bosporus, river runoff, precipitation and evaporation, are compared with the laboratory simulation results obtained previously using the NEMO model. It is shown that the time period of formation of the upper and lower Bosporus currents is of a characteristic time scale 20 years. Relatively short period of adaptation of the Bosporus water exchange to the external conditions testifies that on the climatic scale, the strait should be in a quasi-equilibrium state. The results of the numerical experiments also show that, against the background of the initially preset constant salinity of the Black Sea, the vertical haline stratification is formed rather rapidly due to the fact that the upper forty-meter layer is desalinated by the river runoffs. This leads to formation of a halocline in the 10–40 m layer. In the deeper layers, salinity increases slowly owing to the Marmora Sea water inflow. Each of the calculations shows that intense desalination of the surface layer lasts 70–80 years, whereupon its salinity grows slowly. Conclusions. As a result, the characteristic adaptation period of the basin stratification to the changes in the external factors constitutes 70–100 years. After the equilibrium regime is settled, slow quasi-stationary evolution of the basin fields takes place. Analysis of the obtained results enabled us to deduce the equations for describing slow evolution of the haline stratification.