Synthesis of Bi6O6(OH)3(NO3)3·1.5H2O/ZnO composite material with excellent photocatalytic hydrogen production performance

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Smart and Nano Materials Pub Date : 2021-04-03 DOI:10.1080/19475411.2021.1933251
Lingyi Wang, Shichang Sun, Ziqing Zhong, Qingguang Gong, Xingpeng Jiang, Weiming Zhou, Liwei Wang, Ming-Yun Lin, Zhanhui Yuan
{"title":"Synthesis of Bi6O6(OH)3(NO3)3·1.5H2O/ZnO composite material with excellent photocatalytic hydrogen production performance","authors":"Lingyi Wang, Shichang Sun, Ziqing Zhong, Qingguang Gong, Xingpeng Jiang, Weiming Zhou, Liwei Wang, Ming-Yun Lin, Zhanhui Yuan","doi":"10.1080/19475411.2021.1933251","DOIUrl":null,"url":null,"abstract":"ABSTRACT The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs, thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst. In this paper, Bi6O6(OH)3(NO3)3 · 1.5H2O (BBN) and ZnO are used to construct and synthesize Bi6O6(OH)3(NO3)3 · 1.5H2O/ZnO (BBN/ZnO) heterojunction photocatalyst. Under UV-vis light irradiation, the BBN/ZnO composite could generate H2 with a rate of 28.66 μmol·g−1·h−1, which is higher than pure BBN (0.92 μmol·g−1·h−1) and ZnO (6.54 μmol·h−1·g−1) at around 31.1 and 4.4 times, respectively. Moreover, the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles. The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range, reduced surface migration resistance, and inhibited recombination of photo-generated electron and hole pairs. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"12 1","pages":"185 - 197"},"PeriodicalIF":4.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19475411.2021.1933251","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2021.1933251","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs, thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst. In this paper, Bi6O6(OH)3(NO3)3 · 1.5H2O (BBN) and ZnO are used to construct and synthesize Bi6O6(OH)3(NO3)3 · 1.5H2O/ZnO (BBN/ZnO) heterojunction photocatalyst. Under UV-vis light irradiation, the BBN/ZnO composite could generate H2 with a rate of 28.66 μmol·g−1·h−1, which is higher than pure BBN (0.92 μmol·g−1·h−1) and ZnO (6.54 μmol·h−1·g−1) at around 31.1 and 4.4 times, respectively. Moreover, the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles. The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range, reduced surface migration resistance, and inhibited recombination of photo-generated electron and hole pairs. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有优异光催化制氢性能的Bi6O6(OH)3(NO3)3·1.5H2O/ZnO复合材料的合成
摘要异质结效应可以有效提高光催化剂光生电子和空穴对的分离效率,从而大大提高光催化剂的光催化制氢性能。本文以Bi6O6(OH)3(NO3)3·1.5H2O(BBN)和ZnO为原料,构建并合成了Bi6O3(OH)3.1.5H2O/ZnO(BBN/ZnO)异质结光催化剂。在紫外-可见光照射下,BBN/ZnO复合材料能以28.66μmol·g−1·h−1的速率产生H2,比纯BBN(0.92μmol·g-1·h–1)和ZnO(6.54μmol·h−l)分别高出31.1和4.4倍左右。此外,实验结果发现,该复合材料仍然表现出优异的光催化活性,并在3次循环的12小时实验中保持了高而稳定的活性。增强光催化行为的可能机制归因于扩大的光吸收范围、降低的表面迁移电阻以及抑制光生电子和空穴对的复合。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
期刊最新文献
Confined gas transport in low-dimensional materials The rate dependence of the dielectric strength of dielectric elastomers Multi-stable straw-like carbon nanotubes for mechanical programmability at microscale Selective and asymmetric ion transport in covalent organic framework-based two-dimensional nanofluidic devices Nanodiamond reinforced self-healing and transparent poly(urethane–urea) protective coating for scratch resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1