V. J. Huamaní-Meléndez, M. A. Mauro, R. Darros‐Barbosa
{"title":"Xanthan gum and Tara gum galactomannans have a synergistic effect on gelation properties","authors":"V. J. Huamaní-Meléndez, M. A. Mauro, R. Darros‐Barbosa","doi":"10.1177/20412479231174154","DOIUrl":null,"url":null,"abstract":"Rheology is essential for assessing the applicability of bio-based and renewable polymers because it provides crucial information about their mechanical properties, flow behavior, and processing characteristics. So, gels formed by carbohydrate polymer mixtures have specific rheological properties that can be used in the food industry to improve processes, develop new products, or replace ingredients. The aim of the research was to characterize the interactions and synergy of the aqueous mixture of Xanthan gum (XG) and Tara gum (TG). Commercial TG was previously purified, and aqueous mixtures were prepared using varying concentrations of XG and TG. Rheological properties were determined using a rotational rheometer. An equation was proposed to quantify the degree of solid behavior of the formed gel as a function of its mechanical properties. Pure TG or XG in aqueous solution exhibited pseudoplastic behavior. At a 0.4% w/w concentration, the XG solution displayed a “weak gel” behavior. The concentrations of XG and TG in the aqueous mixture of the gums had a significant effect on the gel strength, presenting a region of maximum value, limited between the concentrations of 0.4–0.5% TG and 0.2–0.3% XG. The greatest strength of the gel was obtained at intermediate concentrations of gum; however, the value of the strain limit displayed a linear increase with TG concentration, confirming the synergistic effect on the solid-like behavior and strength of the gel.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231174154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Rheology is essential for assessing the applicability of bio-based and renewable polymers because it provides crucial information about their mechanical properties, flow behavior, and processing characteristics. So, gels formed by carbohydrate polymer mixtures have specific rheological properties that can be used in the food industry to improve processes, develop new products, or replace ingredients. The aim of the research was to characterize the interactions and synergy of the aqueous mixture of Xanthan gum (XG) and Tara gum (TG). Commercial TG was previously purified, and aqueous mixtures were prepared using varying concentrations of XG and TG. Rheological properties were determined using a rotational rheometer. An equation was proposed to quantify the degree of solid behavior of the formed gel as a function of its mechanical properties. Pure TG or XG in aqueous solution exhibited pseudoplastic behavior. At a 0.4% w/w concentration, the XG solution displayed a “weak gel” behavior. The concentrations of XG and TG in the aqueous mixture of the gums had a significant effect on the gel strength, presenting a region of maximum value, limited between the concentrations of 0.4–0.5% TG and 0.2–0.3% XG. The greatest strength of the gel was obtained at intermediate concentrations of gum; however, the value of the strain limit displayed a linear increase with TG concentration, confirming the synergistic effect on the solid-like behavior and strength of the gel.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.