Hand–Eye Calibration Using a Tablet Computer

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-02-08 DOI:10.3390/mca28010022
J. Sato
{"title":"Hand–Eye Calibration Using a Tablet Computer","authors":"J. Sato","doi":"10.3390/mca28010022","DOIUrl":null,"url":null,"abstract":"Many approaches have been developed to solve the hand–eye calibration problem. The traditional approach involves a precise mathematical model, which has advantages and disadvantages. For example, mathematical representations can provide numerical and quantitative results to users and researchers. Thus, it is possible to explain and understand the calibration results. However, information about the end-effector, such as the position attached to the robot and its dimensions, is not considered in the calibration process. If there is no CAD model, additional calibration is required for accurate manipulation, especially for a handmade end-effector. A neural network-based method is used as the solution to this problem. By training a neural network model using data created via the attached end-effector, additional calibration can be avoided. Moreover, it is not necessary to develop a precise and complex mathematical model. However, it is difficult to provide quantitative information because a neural network is a black box. Hence, a method with both advantages is proposed in this study. A mathematical model was developed and optimized using the data created by the attached end-effector. To acquire accurate data and evaluate the calibration results, a tablet computer was utilized. The established method achieved a mean positioning error of 1.0 mm.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Many approaches have been developed to solve the hand–eye calibration problem. The traditional approach involves a precise mathematical model, which has advantages and disadvantages. For example, mathematical representations can provide numerical and quantitative results to users and researchers. Thus, it is possible to explain and understand the calibration results. However, information about the end-effector, such as the position attached to the robot and its dimensions, is not considered in the calibration process. If there is no CAD model, additional calibration is required for accurate manipulation, especially for a handmade end-effector. A neural network-based method is used as the solution to this problem. By training a neural network model using data created via the attached end-effector, additional calibration can be avoided. Moreover, it is not necessary to develop a precise and complex mathematical model. However, it is difficult to provide quantitative information because a neural network is a black box. Hence, a method with both advantages is proposed in this study. A mathematical model was developed and optimized using the data created by the attached end-effector. To acquire accurate data and evaluate the calibration results, a tablet computer was utilized. The established method achieved a mean positioning error of 1.0 mm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用平板电脑进行手眼校准
已经开发了许多方法来解决手眼校准问题。传统的方法涉及精确的数学模型,这有优点也有缺点。例如,数学表示可以向用户和研究人员提供数值和定量结果。因此,可以解释和理解校准结果。然而,在校准过程中不考虑有关末端执行器的信息,例如连接到机器人的位置及其尺寸。如果没有CAD模型,则需要额外的校准来进行精确操作,尤其是对于手工末端执行器。使用基于神经网络的方法来解决这个问题。通过使用通过连接的末端执行器创建的数据来训练神经网络模型,可以避免额外的校准。此外,没有必要建立精确而复杂的数学模型。然而,由于神经网络是一个黑匣子,因此很难提供定量信息。因此,本研究提出了一种同时具有这两种优点的方法。使用连接的末端执行器创建的数据开发并优化了数学模型。为了获得准确的数据并评估校准结果,使用了平板电脑。所建立的方法实现了1.0mm的平均定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1